Hello everyone,

My coefficient for my Construction costs index is too high I have correct construction costs index by dividing it by the cpi index and multiplied by 100 to get the real construction cost variable afterwards I have taken the log of real construction cost to get log real construction cost index. However when I run my regression I get a very high coefficient and I was wondering how I can solve this problem?

Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input double ConsCost_index float(real_consCost log_real_consCost)
  100       100 4.6051702
105.2 102.73438  4.632147
109.3 102.53437  4.630198
111.5 101.25672  4.617659
113.7 101.13087 4.6164155
115.9 101.76472 4.6226635
119.3 102.99907   4.63472
124.1 105.97746 4.6632266
129.8 109.09948 4.6922603
  130 106.60252  4.669107
130.8  105.9867 4.6633134
133.4 106.70628   4.67008
135.7 106.10562  4.664435
  136 103.74653 4.6419506
137.2  102.1092  4.626043
139.8 103.01408 4.6348658
142.6  104.4506  4.648714
145.9 106.54813 4.6685967
149.6 107.74178 4.6797376
153.8 108.91506 4.6905684
157.2 108.50176 4.6867666
  100       100 4.6051702
105.2 102.73438  4.632147
109.3 102.53437  4.630198
111.5 101.25672  4.617659
113.7 101.13087 4.6164155
115.9 101.76472 4.6226635
119.3 102.99907   4.63472
124.1 105.97746 4.6632266
129.8 109.09948 4.6922603
  130 106.60252  4.669107
130.8  105.9867 4.6633134
133.4 106.70628   4.67008
135.7 106.10562  4.664435
  136 103.74653 4.6419506
137.2  102.1092  4.626043
139.8 103.01408 4.6348658
142.6  104.4506  4.648714
145.9 106.54813 4.6685967
149.6 107.74178 4.6797376
153.8 108.91506 4.6905684
157.2 108.50176 4.6867666
  100       100 4.6051702
105.2 102.73438  4.632147
109.3 102.53437  4.630198
111.5 101.25672  4.617659
113.7 101.13087 4.6164155
115.9 101.76472 4.6226635
119.3 102.99907   4.63472
124.1 105.97746 4.6632266
129.8 109.09948 4.6922603
  130 106.60252  4.669107
130.8  105.9867 4.6633134
133.4 106.70628   4.67008
135.7 106.10562  4.664435
  136 103.74653 4.6419506
137.2  102.1092  4.626043
139.8 103.01408 4.6348658
142.6  104.4506  4.648714
145.9 106.54813 4.6685967
149.6 107.74178 4.6797376
153.8 108.91506 4.6905684
157.2 108.50176 4.6867666
  100       100 4.6051702
105.2 102.73438  4.632147
109.3 102.53437  4.630198
111.5 101.25672  4.617659
113.7 101.13087 4.6164155
115.9 101.76472 4.6226635
119.3 102.99907   4.63472
124.1 105.97746 4.6632266
129.8 109.09948 4.6922603
  130 106.60252  4.669107
130.8  105.9867 4.6633134
133.4 106.70628   4.67008
135.7 106.10562  4.664435
  136 103.74653 4.6419506
137.2  102.1092  4.626043
139.8 103.01408 4.6348658
142.6  104.4506  4.648714
145.9 106.54813 4.6685967
149.6 107.74178 4.6797376
153.8 108.91506 4.6905684
157.2 108.50176 4.6867666
  100       100 4.6051702
105.2 102.73438  4.632147
109.3 102.53437  4.630198
111.5 101.25672  4.617659
113.7 101.13087 4.6164155
115.9 101.76472 4.6226635
119.3 102.99907   4.63472
124.1 105.97746 4.6632266
129.8 109.09948 4.6922603
  130 106.60252  4.669107
130.8  105.9867 4.6633134
133.4 106.70628   4.67008
135.7 106.10562  4.664435
  136 103.74653 4.6419506
137.2  102.1092  4.626043
139.8 103.01408 4.6348658
end


This is my regression command and results:
Code:
. asdoc xtreg log_realHP log_PopulationDensity log_Population Unemployment_rate log_
> real_consCost logReal_income real_interest i.low_dev i.Year,fe vce(robust) replace
>  cnames(low development) save(PanelData_regression) add(Low dev Dummy,YES, Year Du
> mmy,YES) dec(3)
note: 2018.Year omitted because of collinearity
note: 2019.Year omitted because of collinearity

Fixed-effects (within) regression               Number of obs     =      2,532
Group variable: GM_code                         Number of groups  =        282

R-sq:                                           Obs per group:
     within  = 0.8875                                         min =          8
     between = 0.0581                                         avg =        9.0
     overall = 0.0023                                         max =          9

                                                F(13,281)         =     946.78
corr(u_i, Xb)  = -0.5914                        Prob > F          =     0.0000

                                   (Std. Err. adjusted for 282 clusters in GM_code)
-----------------------------------------------------------------------------------
                  |               Robust
       log_realHP |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
log_PopulationD~y |   .0364162   .0302895     1.20   0.230    -.0232068    .0960393
   log_Population |   .1433754    .076217     1.88   0.061    -.0066533    .2934041
Unemployment_rate |     .03056   .0082342     3.71   0.000     .0143513    .0467686
log_real_consCost |   78.75831   1.275555    61.74   0.000     76.24746    81.26917
   logReal_income |   .2192286   .1029772     2.13   0.034     .0165239    .4219334
    real_interest |   .5209448   .0086732    60.06   0.000     .5038721    .5380175
        1.low_dev |   .0109145   .0026326     4.15   0.000     .0057325    .0160966
                  |
             Year |
            2012  |   1.041003   .0177587    58.62   0.000     1.006046     1.07596
            2013  |   2.727895   .0451684    60.39   0.000     2.638983    2.816806
            2014  |   3.375704   .0558562    60.44   0.000     3.265754    3.485653
            2015  |   2.838823   .0477437    59.46   0.000     2.744843    2.932804
            2016  |    1.79892   .0302964    59.38   0.000     1.739283    1.858557
            2017  |   .7132875   .0122971    58.00   0.000     .6890815    .7374935
            2018  |          0  (omitted)
            2019  |          0  (omitted)
                  |
            _cons |  -359.9836    6.54667   -54.99   0.000    -372.8704   -347.0969
------------------+----------------------------------------------------------------
          sigma_u |  .29981225
          sigma_e |  .02925436
              rho |  .99056879   (fraction of variance due to u_i)
----------------------------------------------------------------------------------