I really appreciate the support here in this forum.
The more I learn about statistic and stata, the more I am questioning my model I am trying to analyze.
I have unbalanced panel data.
I want to analyze if Corporate Venture Capital has an influence on the financial performance of a company.
I have decided that I will add zeros to my panel data whenever a company has not invested in a time period (2009-2019).
The qualitatively meaning of the zeros follows the same logic: The amount of investment; no investment = zero amount.
Adding zeros makes my plot look non-linear.
Code:
. . plot tq cvc 5.1325 + | * * | | * * | * * | * T | * o | * * b | ** * * i | * * n | * * ' | * * * s | ** * * * | ** * * Q | *** * * | *** * * * * | ** * * * | ** ** * * * * * | * * ** * * * ** * * * * * * | * ** ** ** * * * * * * .222395 + * * * * * +----------------------------------------------------------------+ 0 Fund Total Estimated Equity Invested in 76.6452 .
Code:
. local controls "fs lev itq rdi growth cap_exp"
.
. xtreg tq cvc `controls' i.fyear, fe vce(cluster gvkey)
Fixed-effects (within) regression Number of obs = 353
Group variable: gvkey Number of groups = 34
R-squared: Obs per group:
Within = 0.5024 min = 2
Between = 0.4515 avg = 10.4
Overall = 0.4733 max = 11
F(17,33) = 31.15
corr(u_i, Xb) = 0.0740 Prob > F = 0.0000
(Std. err. adjusted for 34 clusters in gvkey)
------------------------------------------------------------------------------
| Robust
tq | Coefficient std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
cvc | -.0004955 .0020686 -0.24 0.812 -.0047041 .003713
fs | -.1565618 .1077493 -1.45 0.156 -.3757794 .0626558
lev | .0371103 .0150445 2.47 0.019 .0065021 .0677186
itq | .685569 .1433776 4.78 0.000 .3938652 .9772729
rdi | -6.298757 5.390539 -1.17 0.251 -17.26589 4.668377
growth | .0939487 .1110024 0.85 0.403 -.1318875 .3197848
cap_exp | 1.192223 .7782992 1.53 0.135 -.3912389 2.775684
|
fyear |
2010 | -.1237752 .0610782 -2.03 0.051 -.2480398 .0004894
2011 | -.1557566 .0697817 -2.23 0.033 -.2977285 -.0137846
2012 | -.1343674 .075972 -1.77 0.086 -.2889337 .0201988
2013 | -.0314902 .0584656 -0.54 0.594 -.1504393 .0874589
2014 | .0033938 .0763937 0.04 0.965 -.1520302 .1588179
2015 | .0466549 .0763477 0.61 0.545 -.1086757 .2019855
2016 | .0999757 .0848034 1.18 0.247 -.0725581 .2725095
2017 | .0848351 .0936 0.91 0.371 -.1055954 .2752657
2018 | .0135201 .0985238 0.14 0.892 -.1869281 .2139683
2019 | .0607907 .094598 0.64 0.525 -.1316703 .2532517
|
_cons | 2.321139 1.365598 1.70 0.099 -.4571896 5.099468
-------------+----------------------------------------------------------------
sigma_u | .74063035
sigma_e | .29752864
rho | .86104329 (fraction of variance due to u_i)
------------------------------------------------------------------------------
I detected heteroscedasticity, autocorrelation, no multicollinearity (VIF is small) & -fe- is appropriate.
Is my model correct or can someone recommend me a better model/command in my case.
I appreciate your support!
Thank you
Kind regards,
Jana
0 Response to Model for non-linear regression (?)
Post a Comment