Code:
reghdfe cases_normed i.days#bus_policy_open_risk cases_normed_delay_14days cases_normed_delay_14days_growth residential workplaces transit_stations parks grocery_and_pharmacy retail_and_recreation  if days<=368 & days>=331  , absorb( fips  )
I am trying to build the previous regression where bus_policy_open_risk has two values (0,1) the results as follows:
Code:
 reghdfe cases_normed i.days#bus_policy_open_risk  cases_normed_delay_14days cases_normed_delay_14days_growth residential workplaces tr
> ansit_stations parks grocery_and_pharmacy retail_and_recreation  if days<=368 & days>=331   , absorb( fips  )
(dropped 78 singleton observations)
(MWFE estimator converged in 1 iterations)

HDFE Linear regression                            Number of obs   =      2,988
Absorbing 1 HDFE group                            F(  83,   2402) =       3.61
                                                  Prob > F        =     0.0000
                                                  R-squared       =     0.6040
                                                  Adj R-squared   =     0.5075
                                                  Within R-sq.    =     0.1108
                                                  Root MSE        =     0.4728

--------------------------------------------------------------------------------------------------
                    cases_normed | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
---------------------------------+----------------------------------------------------------------
       days#bus_policy_open_risk |
                          331 1  |   .2096405   .1333903     1.57   0.116    -.0519315    .4712124
                          332 0  |   .0290436   .1178141     0.25   0.805    -.2019843    .2600714
                          332 1  |   .1167609    .136788     0.85   0.393    -.1514738    .3849956
                          333 0  |   .0202103   .1238841     0.16   0.870    -.2227206    .2631411
                          333 1  |   .0876057   .1318282     0.66   0.506    -.1709031    .3461145
                          334 0  |  -.0836872   .1223314    -0.68   0.494    -.3235732    .1561988
                          334 1  |   .3293634   .1349964     2.44   0.015      .064642    .5940849
                          335 0  |  -.0519824   .1225741    -0.42   0.672    -.2923444    .1883795
                          335 1  |   .0569438   .1304069     0.44   0.662     -.198778    .3126656
                          336 0  |  -.0497269   .1156959    -0.43   0.667    -.2766011    .1771473
                          336 1  |   .3096333   .1357965     2.28   0.023     .0433429    .5759236
                          337 0  |  -.0742253   .1197005    -0.62   0.535    -.3089522    .1605016
                          337 1  |   .0582338   .1327688     0.44   0.661    -.2021195    .3185871
                          338 0  |  -.0234937   .1142326    -0.21   0.837    -.2474985     .200511
                          338 1  |   .1724191   .1303567     1.32   0.186    -.0832041    .4280424
                          339 0  |  -.0593665   .1191785    -0.50   0.618    -.2930699    .1743368
                          339 1  |   .1652005   .1308348     1.26   0.207    -.0913603    .4217612
                          340 0  |  -.1055072   .1156711    -0.91   0.362    -.3323326    .1213183
                          340 1  |   .1114776    .133643     0.83   0.404    -.1505899    .3735451
                          341 0  |  -.1084851   .1178873    -0.92   0.358    -.3396563    .1226862
                          341 1  |   .0508871   .1362215     0.37   0.709    -.2162367    .3180108
                          342 0  |  -.0646933   .1205707    -0.54   0.592    -.3011266      .17174
                          342 1  |   .1925672   .1317682     1.46   0.144     -.065824    .4509584
                          343 0  |  -.0475884   .1174408    -0.41   0.685    -.2778842    .1827073
                          343 1  |   .1629395   .1286369     1.27   0.205    -.0893112    .4151902
                          344 0  |  -.0611853   .1277101    -0.48   0.632    -.3116188    .1892482
                          344 1  |   .1395029    .137892     1.01   0.312    -.1308967    .4099024
                          345 0  |  -.0902414   .1253265    -0.72   0.472    -.3360007    .1555178
                          345 1  |   .2101073   .1293424     1.62   0.104     -.043527    .4637415
                          346 0  |   .0101026   .1336115     0.08   0.940    -.2519032    .2721085
                          346 1  |   .1752553   .1273663     1.38   0.169    -.0745039    .4250144
                          347 0  |  -.0532696   .1222337    -0.44   0.663    -.2929639    .1864247
                          347 1  |   .1535804   .1298833     1.18   0.237    -.1011146    .4082755
                          348 0  |  -.0573576   .1159042    -0.49   0.621    -.2846401    .1699249
                          348 1  |   .2491161   .1292221     1.93   0.054    -.0042823    .5025146
                          349 0  |  -.0163862   .1191614    -0.14   0.891    -.2500559    .2172835
                          349 1  |   .1651863   .1297673     1.27   0.203    -.0892812    .4196537
                          350 0  |  -.1191376   .1331604    -0.89   0.371    -.3802588    .1419836
                          350 1  |   .1687508    .130931     1.29   0.198    -.0879987    .4255003
                          351 0  |  -.0480022   .1182763    -0.41   0.685    -.2799363    .1839319
                          351 1  |   .1326414   .1288148     1.03   0.303    -.1199583     .385241
                          352 0  |   .0030494   .1195856     0.03   0.980    -.2314522    .2375509
                          352 1  |   .2942891   .1336999     2.20   0.028     .0321101    .5564682
                          353 0  |   .0189665   .1278907     0.15   0.882    -.2318211    .2697541
                          353 1  |   .1465909   .1319872     1.11   0.267    -.1122296    .4054114
                          354 0  |   -.110522   .1299275    -0.85   0.395    -.3653036    .1442596
                          354 1  |   .1523915   .1312036     1.16   0.246    -.1048925    .4096754
                          355 0  |  -.0756447   .1262508    -0.60   0.549    -.3232166    .1719271
                          355 1  |    .060433   .1279538     0.47   0.637    -.1904783    .3113443
                          356 0  |  -.0957646   .1245305    -0.77   0.442    -.3399629    .1484336
                          356 1  |   .0408801    .133175     0.31   0.759    -.2202697    .3020299
                          357 0  |    .138325   .1254909     1.10   0.270    -.1077567    .3844067
                          357 1  |  -.0411404   .1399316    -0.29   0.769    -.3155396    .2332589
                          358 0  |  -.1219758    .139442    -0.87   0.382    -.3954148    .1514633
                          358 1  |    .109354   .1297075     0.84   0.399    -.1449962    .3637043
                          359 0  |   .0039393   .1240928     0.03   0.975    -.2394007    .2472793
                          359 1  |   .2560763    .135518     1.89   0.059     -.009668    .5218206
                          360 0  |  -.0592402   .1347542    -0.44   0.660    -.3234868    .2050064
                          360 1  |   .5000361   .1370191     3.65   0.000     .2313483     .768724
                          361 0  |  -.1226208   .1245707    -0.98   0.325     -.366898    .1216565
                          361 1  |     .15382   .1383023     1.11   0.266    -.1173843    .4250243
                          362 0  |  -.2125093   .1265772    -1.68   0.093    -.4607211    .0357025
                          362 1  |   .0132899   .1403392     0.09   0.925    -.2619086    .2884884
                          363 0  |  -.2454007   .1270654    -1.93   0.054      -.49457    .0037685
                          363 1  |  -.1819625   .1400782    -1.30   0.194    -.4566491    .0927242
                          364 0  |   .1367787    .130235     1.05   0.294    -.1186059    .3921632
                          364 1  |  -.0606629   .1295566    -0.47   0.640    -.3147172    .1933914
                          365 0  |  -.1406556   .1307284    -1.08   0.282    -.3970078    .1156966
                          365 1  |   .0483386   .1360251     0.36   0.722       -.2184    .3150773
                          366 0  |   .0631108   .1278295     0.49   0.622    -.1875567    .3137783
                          366 1  |  -.0712824    .132783    -0.54   0.591    -.3316635    .1890987
                          367 0  |   .0174997   .1255504     0.14   0.889    -.2286986    .2636979
                          367 1  |  -.0645931    .140157    -0.46   0.645    -.3394342     .210248
                          368 0  |  -.1548754   .1278592    -1.21   0.226    -.4056013    .0958504
                          368 1  |     .01671   .1327696     0.13   0.900    -.2436448    .2770649
                                 |
       cases_normed_delay_14days |   .2925883    .022953    12.75   0.000     .2475785    .3375981
cases_normed_delay_14days_growth |   .0009109   .0002954     3.08   0.002     .0003316    .0014902
                     residential |  -.0551442   .6125502    -0.09   0.928    -1.256326    1.146037
                      workplaces |  -.1953761   .2616483    -0.75   0.455    -.7084558    .3177037
                transit_stations |   .1590853   .0618105     2.57   0.010     .0378778    .2802927
                           parks |  -.0212484   .0286065    -0.74   0.458    -.0773444    .0348475
            grocery_and_pharmacy |  -.0191809   .1138943    -0.17   0.866    -.2425221    .2041602
           retail_and_recreation |  -.2590651   .1554198    -1.67   0.096    -.5638359    .0457056
                           _cons |    .182201   .8551501     0.21   0.831    -1.494707    1.859109
--------------------------------------------------------------------------------------------------

Absorbed degrees of freedom:
-----------------------------------------------------+
 Absorbed FE | Categories  - Redundant  = Num. Coefs |
-------------+---------------------------------------|
        fips |       503           0         503     |
-----------------------------------------------------+


if I try to build same regression but without intersection term and by add condition to the end of regression one when bus_policy_open_risk==0 and other when bus_policy_open_risk==1 as follows:
Code:
reghdfe cases_normed i.days    cases_normed_delay_14days cases_normed_delay_14days_growth residential workplaces transit_stations parks grocery_and_pharmacy retail_and_recreation  if days<=368 & days>=331   &bus_policy_open_risk==0 , absorb( fips  )


reghdfe cases_normed i.days    cases_normed_delay_14days cases_normed_delay_14days_growth residential workplaces transit_stations parks grocery_and_pharmacy retail_and_recreation  if days<=368 & days>=331   &bus_policy_open_risk==1 , absorb( fips  )
after comparing results with intersection variable when it is =1 or 0 it is different. I am wondering which regression is more accurate use intersection variable or adding condition to the regression?