I am interested in obtaining the adjusted R2, beta and the number of observations from a rolling firm specific regression with daily stock returns on daily index for the past 20 days with a rolling window of 5 days. I know how to do this for every month with rangestat:
Code:
bysort permno ym: generate time = _n egen groupvar = group(id ym) g ym = ym(year(date),quarter(date)) format ym %tm rangestat (reg) ret index_ret, interval(groupvar 0 0)
Code:
* Example generated by -dataex-. For more info, type help dataex clear input long id int date double ret float index_ret 14328 22221 -.0889829695224762 .001803953 14328 22222 .08837200701236725 .026489234 14328 22223 -.012820500880479813 .004759688 14328 22224 .0649351105093956 .018437335 14328 22225 .012195110321044922 -.00597336 14328 22228 .5140562057495117 .006632483 14328 22229 -.06896551698446274 .018172745 14328 22230 -.1082620695233345 .021329505 14328 22231 -.060702890157699585 -.005627702 14328 22232 .0102040721103549 .012056893 14328 22235 .04713800176978111 .032979846 14328 22236 -.0418006032705307 .028719326 14328 22237 .09395971894264221 -.000552742 14328 22238 -.021472372114658356 .013957879 14328 22239 .050156690180301666 .014596867 14328 22242 .13731345534324646 .032713316 14328 22243 .2020997405052185 .006492325 14328 22244 -.019650688394904137 .02114875 14328 22246 -.008908677846193314 .03774142 14328 22249 -.04044939950108528 .003200377 14328 22250 -.028103018179535866 .02749086 14328 22251 .04096387326717377 -.0006914838 14328 22252 -.1597222238779068 -.005501994 14328 22253 -.03305788338184357 .05205428 14328 22256 .014245000667870045 -.03006176 14328 22257 .1179775521159172 .1711087 14328 22258 -.03015078417956829 -.008148257 14328 22259 .059585560113191605 .012190343 14328 22260 -.041564811021089554 .003411108 14328 22263 -.18622449040412903 -.0008077892 14328 22264 -.10344832390546799 .010408126 14328 22265 -.02797200158238411 -.011401697 14328 22266 .02517983317375183 .017714906 14328 22267 -.017543843016028404 .001188701 14328 22270 -.042857103049755096 -.006062881 14328 22271 -.03358214721083641 .008756713 14328 22272 -.011583001352846622 .02997179 14328 22273 -.019531231373548508 .004895117 14328 22277 -.04780871793627739 -.01166837 14328 22278 -.041841063648462296 -.011195646 14328 22279 -.0567685067653656 .02688652 14328 22280 -.018518609926104546 -.02967245 14328 22284 -.05188674479722977 .027518934 14328 22285 -.014925358816981316 .04636436 14328 22286 .015151500701904297 .00018430663 14328 22287 .019900478422641754 .03052653 14328 22288 .04390251263976097 .007525986 14328 22291 .028037354350090027 .0802288 14328 22292 .0409090518951416 .0412015 14328 22293 -.04803488776087761 .024360437 14328 22294 0 .06140633 14328 22295 .06880727410316467 -.014240673 14328 22299 .31330475211143494 .04185703 14328 22300 -.029411736875772476 -.008406159 14328 22301 .003367000026628375 .013295086 14328 22302 .1778523325920105 .064392425 14328 22305 .25925928354263306 .1391388 14328 22306 .12217193841934204 .09991153 14328 22307 3.012096643447876 .4485748 14328 22308 -.5663316249847412 -.05006109 14328 22309 .5365005731582642 .15863185 14328 22312 .0030165882781147957 .018297127 14328 22313 -.41203007102012634 -.1268997 14328 22314 .14705882966518402 .04247279 14328 22315 -.20958751440048218 -.0275064 14328 22316 -.03667140007019043 .034286346 14328 22319 -.09516838937997818 .063832745 14328 22320 -.1100323349237442 -.00651125 14328 22321 .05454548820853233 .01131396 14328 22322 -.03275863081216812 .012458925 14328 22323 -.003565058810636401 .006139165 14328 22327 .01073344238102436 -.014631206 14328 22328 -.017699098214507103 -.02176516 14328 22329 -.007207199931144714 -.03160319 14328 22330 .0344826802611351 .009863298 14328 22333 .14912287890911102 -.018951567 14328 22334 .1755724549293518 -.073093235 14328 22335 .18051953613758087 .11123592 14328 22336 -.0880088210105896 -.020706004 14328 22337 -.03377560153603554 -.02613215 14328 22340 .14606742560863495 .04919149 14328 22341 -.02723311446607113 -.018649874 14328 22342 -.0391937717795372 -.03523188 14328 22343 -.06410259008407593 -.04869925 14328 22344 .0024907172191888094 .007939019 14328 22347 .1540372371673584 .06883222 14328 22348 .1302475780248642 .05482205 14328 22349 -.061904724687337875 .04728695 14328 22350 .043654754757881165 .03871811 14328 22351 .08560312539339066 .030587496 14328 22354 .25806453824043274 .014233314 14328 22355 -.07264953851699829 -.03712335 14328 22356 .04147465154528618 .01224215 14328 22357 .03244834393262863 -.03881953 14328 22358 -.004999978002160788 .019755477 14328 22361 -.10337404906749725 -.01357413 14328 22362 -.14651721715927124 -.05685976 14328 22363 -.15384609997272491 -.07915107 14328 22364 .21286019682884216 .08334921 14328 22365 -.06398536264896393 -.02163259 end format %td date
0 Response to Rolling Firm Specific Regression Daily
Post a Comment