The Standard Population data in "oneDistpop.dta" is
Code:
list, clean noobs abbreviate(20) areacode2 sex ageGrp ageSexGrp dist50_byagesex p Jammu Male 50-59 Male 50-59 70193 70193 Jammu Male 60-69 Male 60-69 41400 41400 Jammu Male 70-79 Male 70-79 21287 21287 Jammu Male >=80 Male >=80 10085 10085 Jammu Female 50-59 Female 50-59 61583 61583 Jammu Female 60-69 Female 60-69 38746 38746 Jammu Female 70-79 Female 70-79 21172 21172 Jammu Female >=80 Female >=80 11119 11119
Code:
list in 1/10, clean noobs abbreviate(20) areacode2 cluster id sex ageGrp ageSexGrp dist50_byagesex p outcome Jammu 1 1100101 Female 50-59 Female 50-59 61583 1 0 Jammu 1 1100102 Female 60-69 Female 60-69 38746 1 0 Jammu 1 1100103 Male 70-79 Male 70-79 21287 1 1 Jammu 1 1100104 Female 50-59 Female 50-59 61583 1 0 Jammu 1 1100105 Female 50-59 Female 50-59 61583 1 0 Jammu 1 1100106 Female 60-69 Female 60-69 38746 1 0 Jammu 1 1100118 Male 60-69 Male 60-69 41400 1 1 Jammu 1 1100119 Male 60-69 Male 60-69 41400 1 0 Jammu 1 1100120 Female 60-69 Female 60-69 38746 1 0 Jammu 1 1100122 Female 50-59 Female 50-59 61583 1 0
Option 1: dstdize command
Code:
dstdize outcome p ageSexGrp , by(areacode2) using("oneDistPop.dta") level(95) format(%10.6f) print ... Output Ommited -> areacode2= 1 -----Unadjusted----- Std. Pop. Stratum Pop. Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P ---------------------------------------------------------- Female 5 767 37 0.279 0.0482 0.223 0.0108 Female 6 512 80 0.186 0.1562 0.141 0.0220 Female 7 229 45 0.083 0.1965 0.077 0.0151 Female > 98 28 0.036 0.2857 0.040 0.0115 Male 50- 459 29 0.167 0.0632 0.255 0.0161 Male 60- 368 42 0.134 0.1141 0.150 0.0171 Male 70- 236 47 0.086 0.1992 0.077 0.0154 Male >=8 82 18 0.030 0.2195 0.037 0.0080 ---------------------------------------------------------- Totals: 2751 326 Adjusted Cases: 319.2 Crude Rate: 0.1185 Adjusted Rate: 0.1160 95% Conf. Interval: [0.1041, 0.1279] Summary of Study Populations: areaco~2 N Crude Adj_Rate Confidence Interval -------------------------------------------------------------------------- 1 2751 0.118502 0.116026 [ 0.104115, 0.127938] .
Code:
proportion outcome, stdize(ageSexGrp) stdweight(dist50_byagesex) Proportion estimation N. of std strata = 8 Number of obs = 2,751 -------------------------------------------------------------- | Logit | Proportion Std. Err. [95% Conf. Interval] -------------+------------------------------------------------ outcome | 0 | .8839737 .0060774 .8715152 .8953692 1 | .1160263 .0060774 .1046308 .1284848 --------------------------------------------------------------
The OPTION 2 works better for me since I can use it after svyset.
But I can see that Option 1 is working the way direct standardisation is supposed to work.
Code:
svyset cluster, vce(linearized) singleunit(certainty) svy : proportion outcome, stdize(ageSexGrp) stdweight(dist50_byagesex)
I am sure I am missing something here. Maybe something to do with logit based CIs perhaps when using prop with stdize.
I would be grateful if someone can help me understand the reason for differing results.
Best Wishes
Vivek
0 Response to Direct Standardisation- two in-built Stata methods, different results
Post a Comment