Hello everyone,

I have a panel dataset with daily data on covid-19 outcomes at country level and others explanatory variables. I am trying to use the - mi - function to solve for missing values.
This is my dataset:


Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input double(total_cases_per_million total_deaths_per_million total_tests_per_thousand stringency_index) str13 continent float date_ long n_country float country_system
47390.578 1167.897 147.546 77.31 "South America" 22344 1 1
 1721.732   33.344   10.97 92.59 "South America" 22101 1 1
24389.469  648.313  66.444 80.09 "South America" 22214 1 1
        .        .       . 11.11 "South America" 21947 1 1
41202.788 1034.101 116.002 79.17 "South America" 22303 1 1
22951.813  608.884   63.75 82.87 "South America" 22209 1 1
46141.722 1142.806 141.222 77.31 "South America" 22335 1 1
24706.047  657.805  67.029 80.09 "South America" 22215 1 1
        .        .       . 11.11 "South America" 21967 1 1
15543.134  343.904  49.255 87.96 "South America" 22184 1 1
 7452.068  151.519  29.617 87.96 "South America" 22149 1 1
48718.844 1191.173 153.933 71.76 "South America" 22354 1 1
 5617.073  105.408  23.829 87.96 "South America" 22137 1 1
    8.563     .133    .068   100 "South America" 21998 1 1
   108.13    5.753   1.716 88.89 "South America" 22039 1 1
20998.931  560.716  60.153 82.87 "South America" 22203 1 1
  118.839     6.24   1.976 88.89 "South America" 22042 1 1
28995.873  784.056  76.168 79.17 "South America" 22234 1 1
  115.232     6.04   1.891 88.89 "South America" 22041 1 1
31392.468  851.252   82.05 79.17 "South America" 22248 1 1
39178.771  998.434 108.276 79.17 "South America" 22294 1 1
  829.945   20.975   7.155 88.89 "South America" 22084 1 1
     .022        .    .012 11.11 "South America" 21977 1 1
44103.567 1096.695 129.626 79.17 "South America" 22320 1 1
  279.407   10.333   3.648 90.74 "South America" 22060 1 1
21365.027  569.146  60.853 82.87 "South America" 22204 1 1
        .        .       . 11.11 "South America" 21968 1 1
 26446.63  709.181  70.578 81.94 "South America" 22222 1 1
47562.762 1170.021  148.46 77.31 "South America" 22346 1 1
    1.239     .044    .023 41.67 "South America" 21990 1 1
 1486.798   29.892  10.032 92.59 "South America" 22097 1 1
20290.281  543.679  58.714 82.87 "South America" 22201 1 1
   43.699    1.814    .488   100 "South America" 22015 1 1
  946.659   22.369    7.74 88.89 "South America" 22087 1 1
41951.995 1049.545 119.032 79.17 "South America" 22307 1 1
  372.845   11.926   4.368 90.74 "South America" 22066 1 1
11852.988   246.66  40.696 87.96 "South America" 22169 1 1
 40779.85 1025.649 114.495 79.17 "South America" 22301 1 1
47674.675 1175.353 149.144 71.76 "South America" 22347 1 1
31519.162  856.938  82.475 79.17 "South America" 22249 1 1
34412.043   934.91  92.607 79.17 "South America" 22271 1 1
 5049.034   94.057   22.12 88.89 "South America" 22133 1 1
   69.564    3.363   1.038   100 "South America" 22027 1 1
35709.708  955.023  97.139 79.17 "South America" 22279 1 1
 9036.818  187.119  33.646 87.96 "South America" 22157 1 1
 47836.35 1178.252 149.904 71.76 "South America" 22348 1 1
 47498.11   1169.8  148.09 77.31 "South America" 22345 1 1
  504.339   14.692   5.268 88.89 "South America" 22073 1 1
  2006.67   38.057  12.098 92.59 "South America" 22105 1 1
 31272.28  847.911  81.845 79.17 "South America" 22247 1 1
41481.774 1040.672 117.309 79.17 "South America" 22305 1 1
   97.974    4.823   1.493 88.89 "South America" 22035 1 1
11598.385  241.328   39.99 87.96 "South America" 22168 1 1
 17667.27  465.043  53.686 87.96 "South America" 22192 1 1
   27.989     .863    .251   100 "South America" 22008 1 1
  111.072    5.841   1.805 88.89 "South America" 22040 1 1
        .        .    .011 11.11 "South America" 21973 1 1
    3.496     .089    .046 88.89 "South America" 21995 1 1
 9475.199  197.341  34.768 87.96 "South America" 22159 1 1
38603.253  992.305  106.44 79.17 "South America" 22292 1 1
  152.204    7.279    2.44 90.74 "South America" 22048 1 1
13032.457  268.078  43.448 87.96 "South America" 22174 1 1
 8414.326  178.114  32.178 87.96 "South America" 22154 1 1
 1547.512   30.644  10.286 81.48 "South America" 22098 1 1
25307.674  673.559   68.26 81.94 "South America" 22217 1 1
   83.636    4.093   1.219   100 "South America" 22030 1 1
49084.785 1199.913 155.504 70.37 "South America" 22356 1 1
37086.894  973.011 101.611 79.17 "South America" 22286 1 1
51969.922 1235.912 165.895 71.76 "South America" 22370 1 1
12091.417  249.205  41.233 87.96 "South America" 22170 1 1
 1044.412   23.852   8.194 88.89 "South America" 22089 1 1
        .        .       . 11.11 "South America" 21952 1 1
  145.213    7.058   2.345 90.74 "South America" 22047 1 1
   76.003    3.651   1.097   100 "South America" 22028 1 1
44436.563  1103.51 131.293 79.17 "South America" 22322 1 1
        .        .    .011 11.11 "South America" 21969 1 1
36302.463  962.081  98.926 79.17 "South America" 22283 1 1
 49831.47 1209.648 158.771 70.37 "South America" 22361 1 1
 8190.765  173.445  31.563 87.96 "South America" 22153 1 1
        .        .       . 11.11 "South America" 21966 1 1
18242.147  482.943  54.929 87.96 "South America" 22194 1 1
48006.565 1180.619 150.668 71.76 "South America" 22349 1 1
     .022        .    .012 11.11 "South America" 21979 1 1
 2365.486   43.544  13.388 92.59 "South America" 22110 1 1
39649.257 1002.195 110.126 79.17 "South America" 22296 1 1
        .        .       . 11.11 "South America" 21974 1 1
46627.476 1149.776 143.905 77.31 "South America" 22339 1 1
 9983.189  207.121  35.984 87.96 "South America" 22161 1 1
   11.107     .199    .093   100 "South America" 22000 1 1
   34.384    1.062    .331   100 "South America" 22011 1 1
30963.756  839.481  80.993 79.17 "South America" 22245 1 1
45960.666 1139.708  140.41 77.31 "South America" 22334 1 1
  670.306   18.033   6.307 88.89 "South America" 22079 1 1
        .        .       . 11.11 "South America" 21942 1 1
     .376     .022    .014 11.11 "South America" 21984 1 1
39991.081 1014.077 111.655 79.17 "South America" 22298 1 1
     .752     .044    .019    25 "South America" 21988 1 1
 2459.212   45.358  13.721 92.59 "South America" 22111 1 1
37932.947  982.769 104.195 79.17 "South America" 22289 1 1
45117.578 1119.928 135.678 79.17 "South America" 22328 1 1
end
format %tdCCYY-NN-DD date_
label values n_country n_country
label def n_country 1 "Argentina", modify

and this is my code:
Code:
mi set mlong

mi misstable summarize total_cases_per_million total_deaths_per_million
mi misstable patterns  total_cases_per_million total_deaths_per_million

mi reshape wide total_cases_per_million total_deaths_per_million  total_tests_per_thousand stringency_index , i(n_country) j(date_)

mi register regular total_deaths_per_million* total_tests_per_thousand*  stringency_index*   
mi register imputed total_cases_per_million*  


mi impute chained (regress) total_cases_per_million*  =  total_deaths_per_million* total_tests_per_thousand*  stringency_index* , add(10) rseed (091107)

and this what I get

Code:
no observations
error occurred during imputation of total_cases_per_million21938
total_cases_per_million21939 total_cases_per_million21940
total_cases_per_million21941 total_cases_per_million21942
total_cases_per_million21943 total_cases_per_million21944
total_cases_per_million21945 total_cases_per_million21946
total_cases_per_million21947 total_cases_per_million21948
total_cases_per_million21949 total_cases_per_million21950
total_cases_per_million21951 total_cases_per_million21952
total_cases_per_million21953 total_cases_per_million21954
total_cases_per_million21955 total_cases_per_million21956
total_cases_per_million21957 total_cases_per_million21958
total_cases_per_million21959 total_cases_per_million21960
total_cases_per_million21961 total_cases_per_million21962
total_cases_per_million21963 total_cases_per_million21964
total_cases_per_million21965 total_cases_per_million21966
total_cases_per_million21967 total_cases_per_million21968
total_cases_per_million21969 total_cases_per_million21970
total_cases_per_million21971 total_cases_per_million21972
total_cases_per_million21973 total_cases_per_million21974
total_cases_per_million21975 total_cases_per_million21976
total_cases_per_million21977 total_cases_per_million21978
total_cases_per_million21979 total_cases_per_million21980
total_cases_per_million21981 total_cases_per_million21982
total_cases_per_million21983 total_cases_per_million21984 on m = 1
r(2000);

end of do-file
I tried to change the model (by employing the mvn model), however, I am still not able to figure out how to solve it.
Does anyone knows that is the issue here?
Thank you very much in advance to whoever is willing to help.
Best regards

Alessio Lombini