I am using the two Tobit models in the structural equation model (SEM) framework as below,
Array
the code is
Code:
gsem (Country -> LN_PAT_1, family(gaussian, lcensored(0)) link(identity)) (Country -> RDTA, family( > gaussian, lcensored(0)) link(identity)) (Industry -> LN_PAT_1, family(gaussian, lcensored(0)) link( > identity)) (Industry -> RDTA, family(gaussian, lcensored(0)) link(identity)) (year -> LN_PAT_1, fam > ily(gaussian, lcensored(0)) link(identity)) (year -> RDTA, family(gaussian, lcensored(0)) link(iden > tity)) (LIQUIDITY -> LN_PAT_1, family(gaussian, lcensored(0)) link(identity)) (LIQUIDITY -> RDTA, f > amily(gaussian, lcensored(0)) link(identity)) (LN_TA -> LN_PAT_1, family(gaussian, lcensored(0)) li > nk(identity)) (LN_TA -> RDTA, family(gaussian, lcensored(0)) link(identity)) (PPETA -> LN_PAT_1, fa > mily(gaussian, lcensored(0)) link(identity)) (PPETA -> RDTA, family(gaussian, lcensored(0)) link(id > entity)) (LEV -> LN_PAT_1, family(gaussian, lcensored(0)) link(identity)) (LEV -> RDTA, family(gaus > sian, lcensored(0)) link(identity)), nocapslatent
Code:
Refining starting values: Grid node 0: log likelihood = -56980.295 Fitting full model: Iteration 0: log likelihood = -56980.295 Iteration 1: log likelihood = -50103.258 Iteration 2: log likelihood = -49285.87 Iteration 3: log likelihood = -49258.821 Iteration 4: log likelihood = -49258.782 Iteration 5: log likelihood = -49258.782 Generalized structural equation model Number of obs = 57,490 Response : LN_PAT_1 Number of obs = 57,490 Lower limit : 0 Uncensored = 34,977 Family : Gaussian Left-censored = 22,513 Link : identity Right-censored = 0 Response : RDTA Number of obs = 43,266 Lower limit : 0 Uncensored = 41,788 Family : Gaussian Left-censored = 1,478 Link : identity Right-censored = 0 Log likelihood = -49258.782 --------------------------------------------------------------------------------- | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------+---------------------------------------------------------------- LN_PAT_1 | Country | .0089105 .0008246 10.81 0.000 .0072943 .0105267 Industry | -.0017527 .0007134 -2.46 0.014 -.0031509 -.0003545 year | -.031676 .0016251 -19.49 0.000 -.0348612 -.0284908 LIQUIDITY | .0965281 .003857 25.03 0.000 .0889685 .1040877 LN_TA | .4295258 .0058899 72.93 0.000 .4179818 .4410698 PPETA | -.273905 .0259423 -10.56 0.000 -.324751 -.223059 LEV | -1.111073 .0517833 -21.46 0.000 -1.212566 -1.00958 _cons | 57.96435 3.258487 17.79 0.000 51.57783 64.35086 ----------------+---------------------------------------------------------------- RDTA | Country | .0006957 .0000469 14.84 0.000 .0006038 .0007876 Industry | .0005416 .0000365 14.82 0.000 .00047 .0006133 year | .000565 .0000829 6.82 0.000 .0004026 .0007274 LIQUIDITY | .0022623 .0002236 10.12 0.000 .001824 .0027006 LN_TA | -.0172278 .0003179 -54.18 0.000 -.0178509 -.0166046 PPETA | -.0318991 .0013397 -23.81 0.000 -.0345248 -.0292733 LEV | -.0402615 .0026459 -15.22 0.000 -.0454474 -.0350757 _cons | -.8705099 .1662382 -5.24 0.000 -1.196331 -.544689 ----------------+---------------------------------------------------------------- var(e.LN_PAT_1)| 3.577723 .0293979 3.520566 3.635809 var(e.RDTA)| .0079849 .0000555 .0078768 .0080945 ---------------------------------------------------------------------------------
I got the result like below,
Code:
. mfx compute Marginal effects after gsem y = Predicted mean (LN_PAT_1) (predict) = .75266612 ------------------------------------------------------------------------------ variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X ---------+-------------------------------------------------------------------- Country | .0050871 .00085 5.97 0.000 .003417 .006758 25.6201 Industry | -.0048731 .00073 -6.65 0.000 -.00631 -.003436 27.8678 year | -.0288715 .00178 -16.23 0.000 -.032357 -.025386 2001.6 LIQUID~Y | .0672255 .00417 16.11 0.000 .059048 .075403 8.11123 LN_TA | .4726395 .0063 74.98 0.000 .460284 .484995 13.0144 PPETA | -.3848692 .02974 -12.94 0.000 -.443168 -.326571 .565122 LEV | -1.00272 .05403 -18.56 0.000 -1.10862 -.896819 .206329 CAPEXTA | 2.735847 .21486 12.73 0.000 2.31472 3.15697 .05374 Q | .1318931 .00548 24.06 0.000 .121147 .142639 2.00173 ------------------------------------------------------------------------------ .
however, I expect to get the result like the below picture, Could you please give me some advice about it?
Array
Please ignore the black area.
Besides, it is really strange that I cannot god of fit by following codes
Code:
. estat gof, stats(all) estat gof not valid
Many thanks in advance.
0 Response to get 1) marginal effects and 2) model fit indices of Tobit models in Structure equation model (SEM) framwork
Post a Comment