I have panel data for years 1998-2020 about firm performance (stock returns). For my future regression model I need to use the data to make several peer groups namely size, industry, size-industry. For size peer groups I have split the data into 4 quartiles already. For the size-industry peer groups I need to first separate by industry (SIC) and then within that industry classification sort the relevant firms into firm size quartiles. I would like to create a new variable with the mean Return of the peers within each size-industry peer group (excluding the Ret of the company itself). For example, all firms that have an SIC code of 5080 and are in the third quartile in terms of Firm Size (within the selection of those with this SIC code) should be in one peer group. Each observation should have an additional variable created that shows the mean Ret of its peers (excluding itself). All of these peer groups should be constructed per year of course in order to be directly comparable. Please let me know if more information is needed to solve this. Thank you in advance!
Code:
* Example generated by -dataex-. For more info, type help dataex clear input YEAR GVKEY FirmSizeQuartiles SIC Ret 2014 "001004" 3 5080 .04133066749753115 2015 "001004" 3 5080 .030511271300266735 2016 "001004" 3 5080 .30706653804452416 2017 "001004" 3 5080 .18616716883920895 2018 "001004" 3 5080 -.02262825649451842 2019 "001004" 3 5080 .2231935663768573 2013 "001045" 4 4512 0 2014 "001045" 4 4512 .8415493288704637 2015 "001045" 4 4512 -.17650238089119838 2016 "001045" 4 4512 .17073748844470268 2017 "001045" 4 4512 .1353606589982849 2018 "001045" 4 4512 -.36499018856917903 2019 "001045" 4 4512 -.02171545035574331 2000 "001056" 1 3825 .7942321914001037 2001 "001056" 1 3825 .004744022674494005 2002 "001056" 1 3825 -.5122880228451151 2003 "001056" 1 3825 .6655166811595907 2004 "001056" 1 3825 .10205846156049947 2005 "001056" 1 3825 -.03859568835002513 2006 "001056" 2 3825 .10293606667514373 2015 "001072" 2 3670 -.09403120412056296 2016 "001072" 2 3670 .28737387954643445 2017 "001072" 3 3670 .13258199640124585 2018 "001072" 3 3670 -.024730791381781084 2007 "001075" 3 4911 -.10725982161935609 2008 "001075" 3 4911 -.18650988603877838 2009 "001075" 3 4911 .2268891870607131 2010 "001075" 3 4911 .17268959199841247 2011 "001075" 3 4911 .1857807090896215 2012 "001075" 3 4911 .09092921043026954 2013 "001075" 3 4911 .07965531555375924 2014 "001075" 3 4911 .2742602315448607 2015 "001075" 3 4911 -.004172655892773795 2016 "001075" 3 4911 .20234815144763957 2017 "001075" 3 4911 .10843727766739865 2018 "001075" 3 4911 .03622570923212827 2019 "001075" 3 4911 .07598462828538802 1998 "001078" 4 3845 .43580184152496615 1999 "001078" 4 3845 -.247286463341008 2000 "001078" 4 3845 .32119312636978986 2001 "001078" 4 3845 .17023644904397983 2002 "001078" 4 3845 -.2368203183565871 2003 "001078" 4 3845 .17500209624754212 2004 "001078" 4 3845 .08722009408565695 2005 "001078" 4 3845 -.10712031745255415 2006 "001078" 4 3845 .2032604995055375 2007 "001078" 4 3845 .13882128917840117 2008 "001078" 4 3845 -.011233185887486393 2009 "001078" 4 3845 .05870697174625365 2010 "001078" 4 3845 -.056174434307530545 2011 "001078" 4 3845 .15381778605683555 2012 "001078" 4 3845 .1423708650576156 2013 "001078" 4 3845 .1738669469608737 2014 "001078" 4 3845 .13811481171937817 2015 "001078" 4 3845 .029822520094305652 2016 "001078" 4 3845 -.06936963370529431 2017 "001078" 4 3845 .30209761505691085 2018 "001078" 4 3845 .1887153194903311 2019 "001078" 4 3845 .14203424444077295 2012 "001161" 4 3674 -.5715821955145768 2013 "001161" 4 3674 .5769143879090025 2014 "001161" 4 3674 -.30173831994521017 2015 "001161" 3 3674 .18457044546315918 2016 "001161" 4 3674 1.5235932261146117 2017 "001161" 4 3674 .008462946915528976 2018 "001161" 4 3674 .8420964422787784 2019 "001161" 4 3674 .8898099175752926 2004 "001164" 4 4813 .3303923166506873 1998 "001203" 3 4731 -.22053356067070676 2014 "001209" 4 2810 .29552307943428663 2015 "001209" 4 2810 -.06247420812233013 2016 "001209" 4 2810 .22885322514359116 2017 "001209" 4 2810 .15349147539065047 2018 "001209" 4 2810 .009272385601108 2019 "001209" 4 2810 .38966674018809094 2020 "001209" 4 2810 .18792437471192985 2000 "001213" 3 4513 -.6394474507645828 2001 "001213" 3 4513 .6387110075880933 2002 "001213" 3 4513 .1259535281062368 2007 "001230" 3 4512 -.3799135041517041 2008 "001230" 3 4512 .28391469192353586 2009 "001230" 3 4512 .26870307836836627 2010 "001230" 3 4512 .5186182946895369 2011 "001230" 4 4512 .280477948353573 2012 "001230" 4 4512 .14096014649099517 2013 "001230" 4 4512 .5374544393543125 2014 "001230" 4 4512 .4717349458620397 2015 "001230" 4 4512 .29185619746588504 2016 "001230" 4 4512 .14928963162911985 2017 "001230" 4 4512 -.11848322511693453 2018 "001230" 4 4512 -.09498970948059714 2019 "001230" 4 4512 .1241551081972381 2002 "001246" 4 5040 -.3647760906341976 2003 "001246" 4 5040 .6162295182087232 2004 "001246" 4 5040 .016911603231813285 2005 "001246" 4 5040 -.059521963893017595 2006 "001246" 3 5040 .4417522025271493 2007 "001246" 3 5040 -.16584304735033525 2012 "001254" 3 4400 -.08673422472408564 2013 "001254" 3 4400 .10186802603055975 end
0 Response to Create peer groups by matching industry code with size quartile, per year.
Post a Comment