I have a question for you. I tried to assess the linearity assumption of my multiple linear regression model by testing the "structure" of the standardized residuals against the values of my predictors; but I'm not so sure this is the best way to do that. I attached an example of what I've done.
Code:
. regress consumilog disoccup inattivitàlog dem_impreselog retrib_medialog componenti_f > amsqr Source | SS df MS Number of obs = 107 -------------+------------------------------ F( 5, 101) = 161.28 Model | 5.44754193 5 1.08950839 Prob > F = 0.0000 Residual | .682297905 101 .006755425 R-squared = 0.8887 -------------+------------------------------ Adj R-squared = 0.8832 Total | 6.12983984 106 .057828678 Root MSE = .08219 ----------------------------------------------------------------------------------- consumilog | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- disoccup | -.0139411 .0028199 -4.94 0.000 -.019535 -.0083473 inattivitàlog | -.6843887 .0814612 -8.40 0.000 -.8459859 -.5227915 dem_impreselog | .015953 .0126544 1.26 0.210 -.00915 .041056 retrib_medialog | .3489728 .1838609 1.90 0.061 -.0157578 .7137034 componenti_famsqr | .0385899 .0133636 2.89 0.005 .0120802 .0650997 _cons | 6.341054 1.937408 3.27 0.001 2.497758 10.18435 -----------------------------------------------------------------------------------
Code:
predict consumires, rstandard
Code:
scatter consumires disoccup
0 Response to Testing linearity with a plot of standardized residuals
Post a Comment