I am analyzing discrete choice experiment data through the user-written command mixlogit. Below is the example of my dataset.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int ID byte(Alternatives Choice Price Biodiversity Flood Forest Livelihood SEX AGE YRS_OF_SCHOOLING) double YRS_OF_RESIDENCY byte HH_Size double HH_INCOME 1 1 1 0 1 1 1 1 0 55 4 5 6 4800 1 2 0 1 3 2 2 2 0 55 4 5 6 4800 1 3 0 5 2 3 1 1 0 55 4 5 6 4800 2 1 1 0 1 1 1 1 0 55 4 5 6 4800 2 2 0 2 1 2 3 3 0 55 4 5 6 4800 2 3 0 4 1 3 2 2 0 55 4 5 6 4800 3 1 1 0 1 1 1 1 0 55 4 5 6 4800 3 2 0 3 2 2 2 1 0 55 4 5 6 4800 3 3 0 1 2 2 1 3 0 55 4 5 6 4800 4 1 1 0 1 1 1 1 0 55 4 5 6 4800 4 2 0 1 3 3 2 3 0 55 4 5 6 4800 4 3 0 5 1 2 1 1 0 55 4 5 6 4800 5 1 1 0 1 1 1 1 0 55 4 5 6 4800 5 2 0 5 3 1 3 3 0 55 4 5 6 4800 5 3 0 3 2 3 1 2 0 55 4 5 6 4800 6 1 1 0 1 1 1 1 0 55 4 5 6 4800 6 2 0 5 1 2 2 1 0 55 4 5 6 4800 6 3 0 3 2 1 3 2 0 55 4 5 6 4800 7 1 1 0 1 1 1 1 0 55 4 5 6 4800 7 2 0 4 3 3 3 2 0 55 4 5 6 4800 7 3 0 3 1 1 2 3 0 55 4 5 6 4800 8 1 0 0 1 1 1 1 1 39 12 20 3 14500 8 2 1 1 3 2 2 2 1 39 12 20 3 14500 8 3 0 5 2 3 1 1 1 39 12 20 3 14500 9 1 0 0 1 1 1 1 1 39 12 20 3 14500 9 2 1 2 1 2 3 3 1 39 12 20 3 14500 9 3 0 4 1 3 2 2 1 39 12 20 3 14500 10 1 0 0 1 1 1 1 1 39 12 20 3 14500 10 2 0 3 2 2 2 1 1 39 12 20 3 14500 10 3 1 1 2 2 1 3 1 39 12 20 3 14500 11 1 0 0 1 1 1 1 1 39 12 20 3 14500 11 2 1 1 3 3 2 3 1 39 12 20 3 14500 11 3 0 5 1 2 1 1 1 39 12 20 3 14500 12 1 0 0 1 1 1 1 1 39 12 20 3 14500 12 2 0 5 3 1 3 3 1 39 12 20 3 14500 12 3 1 3 2 3 1 2 1 39 12 20 3 14500 13 1 0 0 1 1 1 1 1 39 12 20 3 14500 13 2 0 5 1 2 2 1 1 39 12 20 3 14500 13 3 1 3 2 1 3 2 1 39 12 20 3 14500 14 1 0 0 1 1 1 1 1 39 12 20 3 14500 14 2 0 4 3 3 3 2 1 39 12 20 3 14500 14 3 1 3 1 1 2 3 1 39 12 20 3 14500 15 1 1 0 1 1 1 1 1 43 14 30 3 4000 15 2 0 1 3 2 2 2 1 43 14 30 3 4000 15 3 0 5 2 3 1 1 1 43 14 30 3 4000 16 1 1 0 1 1 1 1 1 43 14 30 3 4000 16 2 0 2 1 2 3 3 1 43 14 30 3 4000 16 3 0 4 1 3 2 2 1 43 14 30 3 4000 17 1 1 0 1 1 1 1 1 43 14 30 3 4000 17 2 0 3 2 2 2 1 1 43 14 30 3 4000 17 3 0 1 2 2 1 3 1 43 14 30 3 4000 18 1 1 0 1 1 1 1 1 43 14 30 3 4000 18 2 0 1 3 3 2 3 1 43 14 30 3 4000 18 3 0 5 1 2 1 1 1 43 14 30 3 4000 19 1 1 0 1 1 1 1 1 43 14 30 3 4000 19 2 0 5 3 1 3 3 1 43 14 30 3 4000 19 3 0 3 2 3 1 2 1 43 14 30 3 4000 20 1 1 0 1 1 1 1 1 43 14 30 3 4000 20 2 0 5 1 2 2 1 1 43 14 30 3 4000 20 3 0 3 2 1 3 2 1 43 14 30 3 4000 21 1 1 0 1 1 1 1 1 43 14 30 3 4000 21 2 0 4 3 3 3 2 1 43 14 30 3 4000 21 3 0 3 1 1 2 3 1 43 14 30 3 4000 22 1 0 0 1 1 1 1 0 53 7 53 4 60000 22 2 1 1 3 2 2 2 0 53 7 53 4 60000 22 3 0 5 2 3 1 1 0 53 7 53 4 60000 23 1 0 0 1 1 1 1 0 53 7 53 4 60000 23 2 1 2 1 2 3 3 0 53 7 53 4 60000 23 3 0 4 1 3 2 2 0 53 7 53 4 60000 24 1 0 0 1 1 1 1 0 53 7 53 4 60000 24 2 0 3 2 2 2 1 0 53 7 53 4 60000 24 3 1 1 2 2 1 3 0 53 7 53 4 60000 25 1 0 0 1 1 1 1 0 53 7 53 4 60000 25 2 1 1 3 3 2 3 0 53 7 53 4 60000 25 3 0 5 1 2 1 1 0 53 7 53 4 60000 26 1 0 0 1 1 1 1 0 53 7 53 4 60000 26 2 0 5 3 1 3 3 0 53 7 53 4 60000 26 3 1 3 2 3 1 2 0 53 7 53 4 60000 27 1 0 0 1 1 1 1 0 53 7 53 4 60000 27 2 0 5 1 2 2 1 0 53 7 53 4 60000 27 3 1 3 2 1 3 2 0 53 7 53 4 60000 28 1 0 0 1 1 1 1 0 53 7 53 4 60000 28 2 0 4 3 3 3 2 0 53 7 53 4 60000 28 3 1 3 1 1 2 3 0 53 7 53 4 60000 29 1 0 0 1 1 1 1 0 78 2 50 5 20000 29 2 1 1 3 2 2 2 0 78 2 50 5 20000 29 3 0 5 2 3 1 1 0 78 2 50 5 20000 30 1 0 0 1 1 1 1 0 78 2 50 5 20000 30 2 1 2 1 2 3 3 0 78 2 50 5 20000 30 3 0 4 1 3 2 2 0 78 2 50 5 20000 end
Model 1:
Code:
mixlogit Choice Price ALT2* ALT3*, group(ID) rand($random) nrep(30) difficult robust
Log likelihood: -2055.1528
Chi-square: 0.0000
Model 2:
Code:
mixlogit Choice Price ALT2* ALT3*, group(ID) rand($random) nrep(90) difficult robust
Log likelihood: -2054.7891
Chi-square: 0.0049
where:
Choice = dependent variable
Price = additional cost of conserving the natural resource
The model includes:
*3 alternatives, represented as ALT, including the status quo (Alternative 1 as the base alternative)
*6 Random variables (for the resource’s attributes), two of these are interaction variables
*6 Case-specific variables (socio-economic variables of respondents). These were included in the model by creating categorical variables for the alternatives (ALT2 and ALT3) and creating interaction variables between the socio-economic variables and alternatives.
nrep 30 and 90 seem to provide significant and consistent results (i.e. same significant variables and signs), whereas other levels resulted in endless iterations with not concave messages. Further, nrep>90 resulted in insignificant models, i.e. using nrep(300) resulted in a model with chi-square=0.6002.
My questions are:
- Is there a recommended number of Halton draws (nrep#) for mixed logit? Based on the STATA Journal for mixlogit (https://www.sheffield.ac.uk/polopoly...e/mixlogit.pdf) the default is nrep(50). However, higher levels could give more accurate results.
- Is it acceptable to use either 30 or 90 for this analysis since it provided almost similar results?
0 Response to Implications of nrep(#) on mixlogit analysis
Post a Comment