I'm running a VECM on data coming from a dataset with 87 obs regarding two variables over some years observed on a unique statistical unit (quarterly data). More specifically the variables being used are variable1 and variable2. Now, running the code to fit the VECM I get this:
Code:
vec variable1 variable2, lag(1) trend(rt)
Vector error-correction model
Sample: 1998q2 - 2019q3 Number of obs = 86
AIC = 2.098512
Log likelihood = -84.23601 HQIC = 2.167425
Det(Sigma_ml) = .0243122 SBIC = 2.269745
Equation Parms RMSE R-sq chi2 P>chi2
----------------------------------------------------------------
D_variable1 2 .46599 0.1386 13.35213 0.0013
D_variable2 2 .37733 0.2107 22.15087 0.0000
----------------------------------------------------------------
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
D_variable1 |
_ce1 |
L1. | -.1296324 .0584052 -2.22 0.026 -.2441045 -.0151603
|
_cons | .1331069 .0509223 2.61 0.009 .033301 .2329129
-------------+----------------------------------------------------------------
D_variable2 |
_ce1 |
L1. | -.2118148 .0472929 -4.48 0.000 -.3045071 -.1191224
|
_cons | -.0814626 .0412337 -1.98 0.048 -.1622792 -.0006459
------------------------------------------------------------------------------
Cointegrating equations
Equation Parms chi2 P>chi2
-------------------------------------------
_ce1 1 9.250962 0.0024
-------------------------------------------
Identification: beta is exactly identified
Johansen normalization restriction imposed
------------------------------------------------------------------------------
beta | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_ce1 |
variable1 | 1 . . . . .
variable2 | .261243 .0858917 3.04 0.002 .0928984 .4295877
_trend | -.1412712 .007956 -17.76 0.000 -.1568647 -.1256777
_cons | -48.29221 . . . . .
------------------------------------------------------------------------------Code:
vec, alpha nobtable noetable
Vector error-correction model
Sample: 1998q2 - 2019q3 Number of obs = 86
AIC = 2.098512
Log likelihood = -84.23601 HQIC = 2.167425
Det(Sigma_ml) = .0243122 SBIC = 2.269745
Adjustment parameters
Equation Parms chi2 P>chi2
-------------------------------------------
D_variable1 1 4.926337 0.0265
D_variable2 1 20.05953 0.0000
-------------------------------------------
------------------------------------------------------------------------------
alpha | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
D_variable1 |
_ce1 |
L1. | -.1296324 .0584052 -2.22 0.026 -.2441045 -.0151603
-------------+----------------------------------------------------------------
D_variable2 |
_ce1 |
L1. | -.2118148 .0472929 -4.48 0.000 -.3045071 -.1191224
------------------------------------------------------------------------------Code:
constraint define 1 [D_variable2]L1._ce1=0 . vec variable1 variable2, lag(1) trend(rt) aconstraint(1) Iteration 1: log likelihood = -88.811238 Iteration 2: log likelihood = -88.810546 Iteration 3: log likelihood = -88.81052 Iteration 4: log likelihood = -88.810519 Iteration 5: log likelihood = -88.810518 Iteration 6: log likelihood = -88.810518 Iteration 7: log likelihood = -88.810518 Iteration 8: log likelihood = -88.810518 Iteration 9: log likelihood = -88.810518 Iteration 10: log likelihood = -88.810518 lags() invalid -- invalid numlist has elements outside of allowed range r(125);
Many thanks for your helpful suggestions in advance.
Best.
Francesco
0 Response to testing for adjustment parameters (alpha coefficients) in a VECM
Post a Comment