Hi all,

I am trying to interpret the coefficients presented in the output of a GLM fractional logit model I ran with multiply imputed data. My dependent variable is a share ranging from 0 to 1. Referring to this very helpful response by Maarten Buis a few years ago (https://www.statalist.org/forums/for...interpretation), I tried to obtain Odds Ratios (by adding the options eform base) and Average Marginal Effects (with mimrgns, dydx(w_remarried) post). However, Stata always provides values that are identical to the coefficient in the first model.

How to interpret the coefficient in the first model? How to obtain Odds Ratios and AMEs in fractional logit models in the mi-setting?

Code:
. mi estimate, post: glm share_joint w_remarried [pweight=xrwght], family(binomial) link(logit) vce(robust) nolog

Multiple-imputation estimates                   Imputations       =          5
Generalized linear models                       Number of obs     =     19,044
                                                Average RVI       =     0.0162
                                                Largest FMI       =     0.0294
DF adjustment:   Large sample                   DF:     min       =   4,768.54
                                                        avg       = 312,430.96
                                                        max       = 620,093.37
Model F test:       Equal FMI                   F(   1, 4768.5)   =     264.94
Within VCE type:       Robust                   Prob > F          =     0.0000

------------------------------------------------------------------------------
 share_joint |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
 w_remarried |  -1.013089   .0622403   -16.28   0.000    -1.135109   -.8910692
       _cons |   .5556401   .0181894    30.55   0.000     .5199895    .5912906
------------------------------------------------------------------------------

. mi estimate, post: glm share_joint w_remarried [pweight=xrwght], family(binomial) link(logit) vce(robust) nolog eform base

Multiple-imputation estimates                   Imputations       =          5
Generalized linear models                       Number of obs     =     19,044
                                                Average RVI       =     0.0162
                                                Largest FMI       =     0.0294
DF adjustment:   Large sample                   DF:     min       =   4,768.54
                                                        avg       = 312,430.96
                                                        max       = 620,093.37
Model F test:       Equal FMI                   F(   1, 4768.5)   =     264.94
Within VCE type:       Robust                   Prob > F          =     0.0000

------------------------------------------------------------------------------
 share_joint |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
 w_remarried |  -1.013089   .0622403   -16.28   0.000    -1.135109   -.8910692
       _cons |   .5556401   .0181894    30.55   0.000     .5199895    .5912906
------------------------------------------------------------------------------

. mimrgns, dydx(w_remarried) post

Multiple-imputation estimates                   Imputations       =          5
Average marginal effects                        Number of obs     =     19,044
                                                Average RVI       =     0.0298
                                                Largest FMI       =     0.0294
DF adjustment:   Large sample                   DF:     min       =   4,768.54
                                                        avg       =   4,768.54
Within VCE type: Delta-method                           max       =   4,768.54

Expression   : Linear prediction, predict(xb)
dy/dx w.r.t. : w_remarried

------------------------------------------------------------------------------
             |      dy/dx   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
 w_remarried |  -1.013089   .0622403   -16.28   0.000    -1.135109   -.8910692
------------------------------------------------------------------------------
I really appreciate your help.

Many thanks,
Theresa