I run two step system GMM and the assumption that all the variable is exogenous; but might not strictly exogenous. Below is the output :
Code:
xtabond2 gw L.gw L(0/1).( short_term long_term transient int_pct_tasset tobinq yr_capex_growth b_seg m_share
> _vol) event_num, gmm(L.(gw short_term long_term transient int_pct_tasset tobinq yr_capex_growth b_seg m_shar
> e_vol )) iv(event_num*, eq(level)) h(2) twostep pca
Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
Warning: Number of instruments may be large relative to number of observations.
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: cid Number of obs = 246
Time variable : event_num Number of groups = 87
Number of instruments = 91 Obs per group: min = 1201
Wald chi2(18) = 4.55e+06 avg = 2.83
Prob > chi2 = 0.000 max = 1201
---------------------------------------------------------------------------------
gw | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------
gw |
L1. | .1489766 .0726771 2.05 0.040 .0065321 .2914212
|
short_term |
--. | 10.31974 2.198471 4.69 0.000 6.010813 14.62866
L1. | -11.32196 2.33351 -4.85 0.000 -15.89556 -6.748367
|
long_term |
--. | -3.954428 2.070992 -1.91 0.056 -8.013499 .1046425
L1. | 6.883481 3.553929 1.94 0.053 -.0820916 13.84905
|
transient |
--. | 2.642767 3.810419 0.69 0.488 -4.825517 10.11105
L1. | -8.908993 4.557095 -1.95 0.051 -17.84074 .0227495
|
int_pct_tasset |
--. | -16.26055 17.4643 -0.93 0.352 -50.48995 17.96885
L1. | 66.33505 16.10121 4.12 0.000 34.77727 97.89283
|
tobinq |
--. | .1755169 .3994388 0.44 0.660 -.6073688 .9584027
L1. | 4.303243 1.165217 3.69 0.000 2.01946 6.587026
|
yr_capex_growth |
--. | -.0600049 .0286807 -2.09 0.036 -.116218 -.0037917
L1. | .0196104 .0278989 0.70 0.482 -.0350705 .0742913
|
b_seg |
--. | -1.941495 1.435445 -1.35 0.176 -4.754915 .8719252
L1. | 2.402056 1.219698 1.97 0.049 .0114919 4.792621
|
m_share_vol |
--. | .6679478 .1381052 4.84 0.000 .3972665 .938629
L1. | .1939754 .0791757 2.45 0.014 .0387939 .3491568
|
event_num | .8060752 .3453696 2.33 0.020 .1291633 1.482987
_cons | -28.22342 11.88914 -2.37 0.018 -51.52571 -4.921134
---------------------------------------------------------------------------------
Warning: Uncorrected two-step standard errors are unreliable.
Instruments for first differences equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(1/16).(L.gw L.short_term L.long_term L.transient L.int_pct_tasset
L.tobinq L.yr_capex_growth L.b_seg L.m_share_vol)
Instruments for levels equation
Standard
event_num
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.(L.gw L.short_term L.long_term L.transient L.int_pct_tasset L.tobinq
L.yr_capex_growth L.b_seg L.m_share_vol)
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -3.06 Pr > z = 0.002
Arellano-Bond test for AR(2) in first differences: z = -1.03 Pr > z = 0.302
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(72) = 48.64 Prob > chi2 = 0.984
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(72) = 18.55 Prob > chi2 = 1.000
(Robust, but weakened by many instruments.)
------------------------------------------------------------------------------
Extracted 89 principal components from GMM-style instruments
Portion of variance explained by the components = 0.978
Kaiser-Meyer-Olkin measure of sampling adequacy = 0.997Also I run a different model with same data; except where I did add the industry control variables. Below is the output:
Code:
xtdpdgmm L(0/1).gw active_agg passive_agg int_pct_tasset tobinq yr_capex_growth b_seg m_share_vol consumer_
> discretionary consumer_staples energy financial healthcare industrial information_technology materials real_es
> tate utilities, noserial gmmiv(L.gw, collapse model(difference)) iv( active_agg passive_agg int_pct_tasset to
> binq yr_capex_growth b_seg m_share_vol consumer_discretionary consumer_staples energy financial healthcare in
> dustrial information_technology materials real_estate utilities, difference model(difference)) twostep vce(rob
> ust)
Generalized method of moments estimation
Fitting full model:
Step 1:
initial: f(b) = 44594.685
alternative: f(b) = 43710.162
rescale: f(b) = 5488.4395
Iteration 0: f(b) = 5488.4395
Iteration 1: f(b) = 2723.4145
Iteration 2: f(b) = 116.75556
Iteration 3: f(b) = 85.806709
Iteration 4: f(b) = 84.388052
Iteration 5: f(b) = 82.676703
Iteration 6: f(b) = 82.606986
Iteration 7: f(b) = 82.589215
Iteration 8: f(b) = 82.584455
Iteration 9: f(b) = 82.58285
Iteration 10: f(b) = 82.582289
Iteration 11: f(b) = 82.582079
Iteration 12: f(b) = 82.581999
Iteration 13: f(b) = 82.581968
Iteration 14: f(b) = 82.581956
Iteration 15: f(b) = 82.581951
Step 2:
Iteration 0: f(b) = .29690248
Iteration 1: f(b) = .2426051
Iteration 2: f(b) = .21019636
Iteration 3: f(b) = .19037489
Iteration 4: f(b) = .15706538
Iteration 5: f(b) = .13085923
Iteration 6: f(b) = .09782899
Iteration 7: f(b) = .06635696
Iteration 8: f(b) = .06635696
Group variable: cid Number of obs = 245
Time variable: event_num Number of groups = 87
Moment conditions: linear = 26 Obs per group: min = 1
nonlinear = 13 avg = 2.816092
total = 39 max = 15
(Std. Err. adjusted for 87 clusters in cid)
----------------------------------------------------------------------------------------
| WC-Robust
gw | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
gw |
L1. | -.0080355 .2565298 -0.03 0.975 -.5108247 .4947537
|
active_agg | .378974 .2267992 1.67 0.095 -.0655443 .8234924
passive_agg | -1.489526 .8017774 -1.86 0.063 -3.060981 .0819289
int_pct_tasset | -101.3735 70.78429 -1.43 0.152 -240.1082 37.36117
tobinq | -.284594 .4127688 -0.69 0.491 -1.093606 .5244179
yr_capex_growth | -.033862 .0554779 -0.61 0.542 -.1425967 .0748728
b_seg | -1.892156 2.286801 -0.83 0.408 -6.374203 2.589891
m_share_vol | .1213346 .0724229 1.68 0.094 -.0206116 .2632809
consumer_discretionary | -426.5232 368.1016 -1.16 0.247 -1147.989 294.9427
consumer_staples | -512.5687 341.666 -1.50 0.134 -1182.222 157.0845
energy | -523.647 349.6281 -1.50 0.134 -1208.906 161.6116
financial | -271.938 304.6259 -0.89 0.372 -868.9937 325.1178
healthcare | -256.926 297.4885 -0.86 0.388 -839.9928 326.1409
industrial | -327.7467 646.1796 -0.51 0.612 -1594.235 938.742
information_technology | -171.3303 131.7261 -1.30 0.193 -429.5087 86.848
materials | -534.384 587.235 -0.91 0.363 -1685.343 616.5753
real_estate | -348.9409 698.4176 -0.50 0.617 -1717.814 1019.932
utilities | -327.5032 691.5641 -0.47 0.636 -1682.944 1027.938
_cons | 434.0517 419.3341 1.04 0.301 -387.8279 1255.931
----------------------------------------------------------------------------------------
Instruments corresponding to the linear moment conditions:
1, model(diff):
L1.L.gw L2.L.gw L3.L.gw L4.L.gw L5.L.gw L6.L.gw L7.L.gw L8.L.gw L9.L.gw
L10.L.gw L11.L.gw L12.L.gw L13.L.gw L14.L.gw
2, model(diff):
D.active_agg D.passive_agg D.int_pct_tasset D.tobinq D.yr_capex_growth
D.b_seg D.m_share_vol D.consumer_discretionary D.consumer_staples
D.financial D.real_estate
3, model(level):
_cons
. //porstestimation of GMM
. estat overid
Sargan-Hansen test of the overidentifying restrictions
H0: overidentifying restrictions are valid
2-step moment functions, 2-step weighting matrix chi2(20) = 5.7731
Prob > chi2 = 0.9992
2-step moment functions, 3-step weighting matrix chi2(20) = 27.0385
Prob > chi2 = 0.1342
. estat mmsc
Andrews-Lu model and moment selection criteria
Model | ngroups J nmom npar MMSC-AIC MMSC-BIC MMSC-HQIC
-------------+----------------------------------------------------------------
. | 87 5.7731 39 19 -34.2269 -83.5451 -54.6844
.Thanks
0 Response to Two step system GMM
Post a Comment