I'm using -xtscc- command to estimate a macroeconomic mode. This dataset set has 133 countries and 33 years (unbalanced panel).
My question pertains to lag length used in a fixed effect model.
Variables: dlpccarb: log of per capita carbon emissions, dlrgdp: log of per capita GDP, dlpopden: log of population density, frleg: institutional integrity, fr_lrgdp: interaction between institutional integrity and gdp, lfoss: log of fossil fuels, renew: renewables (% of eneregy consumption)
Code:
xtscc dlpccarb L.dlpccarb dlrgdp dlrgdp2 D.frleg D.frleg2 dlpopden D.fr_lrgdp D.fr2_lrgdp2 D.renew D.lfoss period*, fe lag(7) xtscc dlpccarb L.dlpccarb dlrgdp dlrgdp2 D.frleg D.frleg2 dlpopden D.fr_lrgdp D.fr2_lrgdp2 D.renew D.lfoss period*, fe lag(6)
Generally, to decide on lag length we use AIC BIC. But, in the post estimation command of XTSCC I couldn't find the option of -estat ic- which we use otherwise. (Question 1). How do I decide which is more appropriate lag length?)
I also thought of determining lag length based on -xtunitroot fisher-
Code:
. xtunitroot fisher lrgdp, dfuller trend lags(7)
(551 missing values generated)
Fisher-type unit-root test for lrgdp
Based on augmented Dickey-Fuller tests
--------------------------------------
Ho: All panels contain unit roots Number of panels = 133
Ha: At least one panel is stationary Avg. number of periods = 32.37
AR parameter: Panel-specific Asymptotics: T -> Infinity
Panel means: Included
Time trend: Included
Drift term: Not included ADF regressions: 7 lags
------------------------------------------------------------------------------
Statistic p-value
------------------------------------------------------------------------------
Inverse chi-squared(266) P 349.1656 0.0005
Inverse normal Z 2.5666 0.9949
Inverse logit t(659) L* 1.5204 0.9356
Modified inv. chi-squared Pm 3.6057 0.0002
------------------------------------------------------------------------------
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
------------------------------------------------------------------------------Code:
. xtunitroot fisher lrgdp, dfuller trend lags(6)
(551 missing values generated)
Fisher-type unit-root test for lrgdp
Based on augmented Dickey-Fuller tests
--------------------------------------
Ho: All panels contain unit roots Number of panels = 133
Ha: At least one panel is stationary Avg. number of periods = 32.37
AR parameter: Panel-specific Asymptotics: T -> Infinity
Panel means: Included
Time trend: Included
Drift term: Not included ADF regressions: 6 lags
------------------------------------------------------------------------------
Statistic p-value
------------------------------------------------------------------------------
Inverse chi-squared(266) P 313.2160 0.0247
Inverse normal Z 2.7447 0.9970
Inverse logit t(654) L* 1.9702 0.9754
Modified inv. chi-squared Pm 2.0471 0.0203
------------------------------------------------------------------------------
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
------------------------------------------------------------------------------
0 Response to Determining lag length in a panel dataset.
Post a Comment