hello,

i am doing some research in DID with panel data. i want to see the effect of renewable energy in reducing welfare-recipient or people who receive social security insurance from the government.
my data is :

Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input long welfare_recipient float(renewable nongrid renewablexnongrid jr_sch mid_sch infra_health industry TVsignal Phonesignal)
 469 0 0 0 0 0 1 1 0 0
 157 0 0 0 1 0 1 0 0 1
 474 0 0 0 1 0 1 0 0 1
 661 0 0 0 1 0 1 1 0 0
 342 0 0 0 1 0 1 0 0 1
 100 0 0 0 1 0 1 0 0 1
 279 0 0 0 0 1 1 1 0 0
 301 0 0 0 1 0 1 0 0 1
 376 0 0 0 1 0 1 0 0 1
 249 0 0 0 0 1 1 1 0 0
 285 0 0 0 0 1 1 1 0 1
 287 0 0 0 0 1 1 0 0 1
 115 0 0 0 0 0 0 0 1 0
 228 0 0 0 0 0 1 1 0 1
 210 0 0 0 0 0 1 0 0 1
 185 0 0 0 1 0 1 1 1 0
 262 0 0 0 1 0 1 1 0 1
 200 0 0 0 1 0 1 0 0 1
 160 0 0 0 1 0 0 0 1 0
 423 0 0 0 1 0 1 1 0 1
 419 0 0 0 1 0 1 1 0 1
 510 0 0 0 1 0 1 1 0 0
 583 0 0 0 1 0 1 0 0 0
 120 0 0 0 1 0 1 0 0 1
 527 0 0 0 1 0 1 1 0 0
 218 0 0 0 1 1 1 0 0 1
 308 0 0 0 1 1 1 0 0 1
 198 0 0 0 0 0 1 1 0 0
 202 0 0 0 0 0 1 0 0 1
 209 0 0 0 0 0 1 0 0 1
 269 0 0 0 1 0 1 1 1 0
1126 0 0 0 1 0 1 1 0 0
1000 0 0 0 1 1 1 1 0 1
   0 0 0 0 1 1 1 0 0 1
1336 0 0 0 1 1 1 0 0 1
 239 0 0 0 1 1 1 0 1 0
 451 0 0 0 1 1 1 0 0 0
 250 0 0 0 1 1 1 1 0 1
   0 0 0 0 1 1 1 0 0 1
1311 0 0 0 1 1 1 0 0 1
 458 0 0 0 1 1 1 0 1 0
1051 0 0 0 1 1 1 1 0 1
 800 0 0 0 1 1 1 1 0 1
   0 0 0 0 1 1 1 0 0 1
1440 0 0 0 1 1 1 0 0 1
 277 0 0 0 1 0 1 0 1 0
 334 0 0 0 1 0 1 1 0 1
  85 0 0 0 1 0 1 1 0 1
   0 0 0 0 1 0 1 0 0 1
 585 0 0 0 1 0 1 0 0 1
 356 0 0 0 1 0 1 1 1 1
   0 0 0 0 1 0 1 1 0 1
 400 0 0 0 1 0 1 1 0 1
 750 0 0 0 1 0 1 1 0 1
 900 0 0 0 1 0 1 0 0 1
  52 0 0 0 1 1 1 0 1 1
   0 0 0 0 1 1 1 1 0 1
1161 0 0 0 0 0 1 1 1 1
  24 0 0 0 1 1 1 0 0 1
2000 0 0 0 1 1 1 1 0 1
1489 0 0 0 0 0 1 1 0 1
   0 0 0 0 0 0 1 1 0 1
 400 0 0 0 0 0 1 1 1 1
 150 0 0 0 1 0 1 0 0 1
1950 0 0 0 1 0 0 1 0 1
 617 0 0 0 1 1 1 0 1 1
   0 0 0 0 1 1 1 1 0 1
2730 0 0 0 1 1 1 1 1 1
   0 0 0 0 1 1 1 1 0 1
3100 0 0 0 1 1 1 1 0 1
1821 0 0 0 1 0 1 0 1 1
   0 0 0 0 1 1 1 1 0 1
 200 0 0 0 1 1 1 1 1 1
   0 0 0 0 1 1 1 0 0 1
1640 0 0 0 1 1 1 1 0 1
 218 0 1 0 1 1 1 0 1 1
   0 0 0 0 1 1 1 1 0 1
1200 0 0 0 1 1 1 1 1 1
  50 0 0 0 1 1 1 0 0 1
2100 0 0 0 1 1 1 1 0 1
 164 0 1 0 1 0 1 1 1 0
1024 0 0 0 1 0 1 1 0 1
 730 0 0 0 1 0 1 1 1 1
 393 0 0 0 1 0 1 0 0 1
 948 0 0 0 1 0 1 1 0 1
 385 0 1 0 1 0 1 1 1 0
 426 0 0 0 1 0 1 0 0 1
 499 0 0 0 1 0 1 0 0 1
 372 0 0 0 1 0 1 1 0 0
 520 0 0 0 1 0 1 0 0 1
 390 0 0 0 1 0 1 0 0 1
 709 0 0 0 1 1 1 0 1 0
1501 0 0 0 1 0 1 1 0 1
 608 0 0 0 1 0 1 1 0 1
 750 0 0 0 1 0 1 0 0 1
 194 0 0 0 1 0 1 0 0 1
 364 0 0 0 1 0 1 1 1 0
 426 0 0 0 1 0 1 1 0 0
   6 0 0 0 1 0 1 1 0 1
   0 0 0 0 1 0 1 0 0 1
end

and yes, all my independent variable is dummy.

and my output is :

Code:
.
xtset id_desa year
       panel variable:  id_desa (unbalanced)
        time variable:  year, 2006 to 2018, but with gaps
                delta:  1 unit

. xtreg Pen_Bantuan d_year_ebt d_PLN DD sd smp industri sinyalTV sinyalHP infra_kes i.year, fe cluster ( id_desa)

Fixed-effects (within) regression               Number of obs     =     18,062
Group variable: id_desa                         Number of groups  =      5,205

R-sq:                                           Obs per group:
     within  = 0.0428                                         min =          1
     between = 0.0006                                         avg =        3.5
     overall = 0.0102                                         max =          5

                                                F(13,5204)        =      34.85
corr(u_i, Xb)  = -0.0797                        Prob > F          =     0.0000

                            (Std. Err. adjusted for 5,205 clusters in id_desa)
------------------------------------------------------------------------------
             |               Robust
 Pen_Bantuan |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  d_year_ebt |   320.5818   84.82165     3.78   0.000     154.2957    486.8678
       d_PLN |   65.16589   17.55079     3.71   0.000     30.75897    99.57281
          DD |  -346.1853    84.1762    -4.11   0.000     -511.206   -181.1646
          sd |  -24.81595    12.6424    -1.96   0.050    -49.60035   -.0315438
         smp |   63.10132   18.13105     3.48   0.001     27.55684     98.6458
    industri |   25.61956   9.136575     2.80   0.005     7.708033    43.53108
    sinyalTV |  -34.88289   21.91833    -1.59   0.112    -77.85202    8.086237
    sinyalHP |  -18.75071   10.69288    -1.75   0.080    -39.71326     2.21183
   infra_kes |   .9282455   10.58314     0.09   0.930    -19.81915    21.67564
             |
        year |
       2008  |  -36.05412   14.96352    -2.41   0.016     -65.3889   -6.719336
       2011  |  -25.89031   15.40423    -1.68   0.093    -56.08907    4.308454
       2014  |   131.7223    16.8642     7.81   0.000     98.66139    164.7832
       2018  |   164.8634   18.79985     8.77   0.000     128.0078     201.719
             |
       _cons |   301.1723   20.57644    14.64   0.000     260.8339    341.5108
-------------+----------------------------------------------------------------
     sigma_u |   501.7345
     sigma_e |  513.91592
         rho |  .48800801   (fraction of variance due to u_i)
------------------------------------------------------------------------------
where : pen_bantuan is welfare recipient, d_year_ebt is year when renewable energy plant is operated, d_pln is non-grid area, DD is the interaction between renewable and non-grid area, and the other variable is my control variable.

like we can see that i have high standard error. it is okay or not?

than i try to make it become balance panel, and the result, my standard error became more higher

Code:
. xtset id_desa year
       panel variable:  id_desa (strongly balanced)
        time variable:  year, 2006 to 2018, but with gaps
                delta:  1 unit

. xtreg Pen_Bantuan d_year_ebt d_PLN DD sd smp industri sinyalTV sinyalHP infra_kes i.year, fe cluster ( id_desa)

Fixed-effects (within) regression               Number of obs     =      9,260
Group variable: id_desa                         Number of groups  =      1,852

R-sq:                                           Obs per group:
     within  = 0.0418                                         min =          5
     between = 0.0099                                         avg =        5.0
     overall = 0.0241                                         max =          5

                                                F(13,1851)        =      18.00
corr(u_i, Xb)  = 0.0005                         Prob > F          =     0.0000

                            (Std. Err. adjusted for 1,852 clusters in id_desa)
------------------------------------------------------------------------------
             |               Robust
 Pen_Bantuan |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  d_year_ebt |   413.0277   127.3231     3.24   0.001     163.3158    662.7396
       d_PLN |    101.005   25.91229     3.90   0.000     50.18461    151.8254
          DD |   -462.132   127.1197    -3.64   0.000    -711.4451   -212.8189
          sd |  -50.50605   25.00024    -2.02   0.044    -99.53767   -1.474426
         smp |    77.5842   24.66175     3.15   0.002     29.21642     125.952
    industri |   43.06753   13.63826     3.16   0.002     16.31953    69.81552
    sinyalTV |  -14.28977   31.86309    -0.45   0.654    -76.78115     48.2016
    sinyalHP |   -17.9242   16.27599    -1.10   0.271    -49.84542    13.99702
   infra_kes |   23.03077   21.26598     1.08   0.279    -18.67706     64.7386
             |
        year |
       2008  |  -57.11102   19.97784    -2.86   0.004     -96.2925   -17.92955
       2011  |  -24.54144   19.23714    -1.28   0.202    -62.27022    13.18734
       2014  |   125.6676   21.58866     5.82   0.000     83.32692    168.0083
       2018  |    187.306   24.15648     7.75   0.000     139.9292    234.6828
             |
       _cons |   388.3949   36.05687    10.77   0.000     317.6785    459.1114
-------------+----------------------------------------------------------------
     sigma_u |  612.57098
     sigma_e |  604.19824
         rho |   .5068808   (fraction of variance due to u_i)
------------------------------------------------------------------------------
it is okay with my standard error? or i have spurious regression problem with my model?

many thanks with the help