My code is as follows:
Code:
mi estimate (_b[MED14_0]) ///
(_b[MED14_0] + _b[2.WAVE#c.MED14_0]) ///
(_b[MED14_0] + _b[3.WAVE#c.MED14_0]) ///
(_b[MED14_0] + _b[c.MED14_0#1.SEX]) ///
(_b[MED14_0] + _b[2.WAVE#c.MED14_0] + _b[2.WAVE#c.MED14_0#1.SEX]) ///
(_b[MED14_0] + _b[3.WAVE#c.MED14_0] + _b[3.WAVE#c.MED14_0#1.SEX]) ///
, eform cmdok: ///
melogit BINGE_ i.BINGE_base c.MED14_0##i.WAVE##i.SEX ///main terms + interaction
DEP_0 ADHD_0 DB_0 i.FAMHIST_ALC i.FAMHIST_DRUG i.MJ_0 i.NIC_0 ///
i.DRUGS_0 AGE_0 i.ETHNIC i.LUNCH ///covariates
if MISSING_OUT==0 || SCHOOL: || SID: //extra stuff
Code:
Multiple-imputation estimates Imputations = 10
Mixed-effects logistic regression Number of obs = 4,218
Average RVI = 0.0507
Largest FMI = 0.1528
DF: min = 407.24
avg = 282,605.14
DF adjustment: Large sample max = 6308629.07
F( 27, .) = .
Within VCE type: OIM Prob > F = .
---------------------------------------------------------------------------------------
BINGE_ | exp(b) Std. Err. t P>|t| [95% Conf. Interval]
----------------------+----------------------------------------------------------------
1.BINGE_base | 9.493373 1.882706 11.35 0.000 6.435928 14.00329
MED14_0 | 1.101308 .046136 2.30 0.021 1.014443 1.195611
|
WAVE |
2 | 1.253049 .3675333 0.77 0.442 .7045933 2.228425
3 | 2.643886 .7371351 3.49 0.000 1.530396 4.567533
|
WAVE#c.MED14_0 |
2 | 1.003756 .0513321 0.07 0.942 .9077536 1.109912
3 | .923678 .0449719 -1.63 0.103 .83954 1.016248
|
SEX |
Male | 2.146329 .7539484 2.17 0.030 1.077666 4.274726
|
SEX#c.MED14_0 |
Male | .8877788 .054471 -1.94 0.053 .7870215 1.001435
|
WAVE#SEX |
2#Male | .8968825 .3610686 -0.27 0.787 .4073536 1.974693
3#Male | .4687726 .1874344 -1.89 0.058 .2140023 1.026848
|
WAVE#SEX#c.MED14_0 |
2#Male | 1.033528 .0720354 0.47 0.636 .9014825 1.184915
3#Male | 1.155732 .0809422 2.07 0.039 1.007326 1.326003
|
DEP_0 | 1.002952 .0061672 0.48 0.632 .9909373 1.015113
ADHD_0 | 1.235144 .1692749 1.54 0.123 .9441368 1.615847
DB_0 | .9805965 .0124518 -1.54 0.123 .9564893 1.005311
|
FAMHIST_ALC |
Yes | 1.284036 .2242157 1.43 0.153 .911536 1.80876
|
FAMHIST_DRUG |
Yes | 1.117512 .2199697 0.56 0.573 .7593975 1.644504
|
MJ_0 |
Yes | 1.700471 .3236107 2.79 0.005 1.171062 2.469213
|
NIC_0 |
Yes | 1.66683 .3154218 2.70 0.007 1.150307 2.415286
|
DRUGS_0 |
Yes | 1.532934 .3410133 1.92 0.055 .9912093 2.370726
AGE_0 | .9446203 .1776188 -0.30 0.762 .6529157 1.36665
|
ETHNIC |
Black | .5275365 .2357775 -1.43 0.152 .2196909 1.266756
Hispanic/Latino | .9414317 .2117789 -0.27 0.788 .605732 1.463178
Asian | .471768 .150416 -2.36 0.018 .2525062 .8814238
Other | .8965573 .2321105 -0.42 0.673 .5397553 1.489221
|
LUNCH |
1 | .9288689 .2640768 -0.26 0.795 .5316108 1.622987
2 | .7690034 .137333 -1.47 0.142 .5416204 1.091846
|
_cons | .0751932 .2331758 -0.83 0.404 .0001705 33.16745
----------------------+----------------------------------------------------------------
var(_cons[SCHOOL])| .0116671 .0295897 .0000809 1.681846
var(_cons[SCHOOL>SID])| 3.039094 .3954284 2.355 3.921907
---------------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Transformations Average RVI = 0.1182
Largest FMI = 0.1536
DF adjustment: Large sample DF: min = 403.10
avg = 1,520.15
Within VCE type: OIM max = 5,199.22
_mi_1: _b[MED14_0]
_mi_2: _b[MED14_0] + _b[2.WAVE#c.MED14_0]
_mi_3: _b[MED14_0] + _b[3.WAVE#c.MED14_0]
_mi_4: _b[MED14_0] + _b[c.MED14_0#1.SEX]
_mi_5: _b[MED14_0] + _b[2.WAVE#c.MED14_0] + _b[2.WAVE#c.MED14_0#1.SEX]
_mi_6: _b[MED14_0] + _b[3.WAVE#c.MED14_0] + _b[3.WAVE#c.MED14_0#1.SEX]
------------------------------------------------------------------------------
BINGE_ | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_mi_1 | .0964984 .041892 2.30 0.021 .0143394 .1786573
_mi_2 | .1002475 .0425527 2.36 0.019 .0165946 .1839004
_mi_3 | .0171066 .0389594 0.44 0.661 -.0592702 .0934835
_mi_4 | -.0225343 .0448122 -0.50 0.615 -.1106248 .0655562
_mi_5 | .1332256 .067133 1.98 0.048 .0013654 .2650859
_mi_6 | .1618407 .0664786 2.43 0.015 .0312957 .2923857
------------------------------------------------------------------------------
Note: Number of groups varies among imputations.
Note: Number of observations per group varies among imputations.
0 Response to Exponentiated coefficients after mi estimate: melogit
Post a Comment