Hi statalist,
I am running an ordinal regression model separately for each sex because I expect that the effects of the predictors (specifically the interaction) to be different for men and women. The models are testing the likelihood that men/women would have a traditional ideology.

Code:
svyset qid [pweight=wt]
svy: ologit id3 i.education 1.work 0.spouse#i.economic i.religion  i.listen political i.economic i.marital i.region logincome age agesq i.cohort i.period if gender==1, or
est store man
svy: ologit id3 i.education 1.work 0.spouse#i.economic i.religion  i.listen political i.economic i.marital i.region logincome age agesq i.cohort i.period if gender==2, or
est store woman
suest man woman
Code:
Simultaneous survey results for man, woman

Number of strata   =         1                  Number of obs     =      2,680
Number of PSUs     =     1,987                  Population size   = 2,655.2312
                                                Design df         =      1,986

-----------------------------------------------------------------------------------------------------------------
                                                |             Linearized
                                                |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------------------------------------+----------------------------------------------------------------
man_id3                                         |
                                      education |
                                    Elementary  |   .0787633   .1806598     0.44   0.663    -.2755394     .433066
                                     Secondary  |   .0117818   .1726825     0.07   0.946    -.3268761    .3504397
                                    University  |   .1053516   .2021198     0.52   0.602    -.2910376    .5017408
                                                |
                                           work |
                                        1. yes  |  -.1116036   .1737101    -0.64   0.521    -.4522767    .2290695
                                                |
                                spouse#economic |
         Spouse works#Covers expenses (secure)  |   1.160649   .3581059     3.24   0.001     .4583466    1.862952
Spouse works#Doesn't cover expenses (insecure)  |  -.4648882   .2072134    -2.24   0.025    -.8712666   -.0585098
                                                |
                                       religion |
                                  2. christian  |  -.0182428   .2704264    -0.07   0.946    -.5485919    .5121064
                                                |
                                         listen |
                                  2. sometimes  |  -.3539208   .1319334    -2.68   0.007    -.6126632   -.0951785
                                     3. rarely  |  -.4853662   .1459226    -3.33   0.001    -.7715436   -.1991889
                                                |
                                      political |   .2089263   .0620367     3.37   0.001     .0872625      .33059
                                                |
                                       economic |
             Doesn't cover expenses (insecure)  |   .0729956   .1575337     0.46   0.643    -.2359531    .3819442
                                                |
                                        marital |
                                    2. married  |  -.0432063   .1904298    -0.23   0.821    -.4166694    .3302567
                                                |
                                         region |
                      Lower Egypt governorates  |  -.1365269   .1599036    -0.85   0.393    -.4501234    .1770695
                      Upper Egypt governorates  |  -.2274291   .1685498    -1.35   0.177     -.557982    .1031238
                                                |
                                      logincome |   .1551783   .0958476     1.62   0.106    -.0327941    .3431508
                                            age |   .0128797    .051374     0.25   0.802    -.0878728    .1136323
                                          agesq |  -.0001043   .0005008    -0.21   0.835    -.0010865    .0008779
                                                |
                                         cohort |
                                     1964-1973  |   .1119754   .2476741     0.45   0.651     -.373753    .5977037
                                     1974-1983  |   .3115691   .3595084     0.87   0.386    -.3934841    1.016622
                                     1984-1993  |   .4088195   .5206053     0.79   0.432    -.6121704    1.429809
                                                |
                                         period |
                                     2012-2014  |   .6442029   .1490939     4.32   0.000     .3518061    .9365997
                                     2016-2017  |   .7775735   .1686798     4.61   0.000     .4467656    1.108381
------------------------------------------------+----------------------------------------------------------------
/man                                            |
                                           cut1 |  -.7401549    1.46927                     -3.621628    2.141318
                                           cut2 |   .5665118   1.464685                     -2.305969    3.438993
                                           cut3 |   2.077412   1.467121                     -.7998457     4.95467
------------------------------------------------+----------------------------------------------------------------
woman_id3                                       |
                                      education |
                                    Elementary  |   .2780877   .1916926     1.45   0.147    -.0978519    .6540274
                                     Secondary  |   .3179796   .1865287     1.70   0.088    -.0478329     .683792
                                    University  |   .4554928   .2570505     1.77   0.077    -.0486242    .9596097
                                                |
                                           work |
                                        1. yes  |   .2620603   .2351785     1.11   0.265    -.1991622    .7232829
                                                |
                                spouse#economic |
         Spouse works#Covers expenses (secure)  |  -.3328209   .3344589    -1.00   0.320    -.9887481    .3231063
Spouse works#Doesn't cover expenses (insecure)  |  -.1385766   .2600382    -0.53   0.594     -.648553    .3713997
                                                |
                                       religion |
                                  2. christian  |   .2921078    .378534     0.77   0.440    -.4502576    1.034473
                                                |
                                         listen |
                                  2. sometimes  |  -.7402079   .1633234    -4.53   0.000    -1.060511   -.4199048
                                     3. rarely  |  -.4795959   .1657152    -2.89   0.004    -.8045897    -.154602
                                                |
                                      political |   .4714854    .054928     8.58   0.000     .3637628     .579208
                                                |
                                       economic |
             Doesn't cover expenses (insecure)  |  -.0602975   .2918711    -0.21   0.836    -.6327033    .5121082
                                                |
                                        marital |
                                    2. married  |   .0447678   .2589441     0.17   0.863    -.4630628    .5525984
                                                |
                                         region |
                      Lower Egypt governorates  |  -.2900283   .1768335    -1.64   0.101    -.6368269    .0567704
                      Upper Egypt governorates  |  -.3901754   .1939057    -2.01   0.044    -.7704554   -.0098955
                                                |
                                      logincome |   .0190685   .1196309     0.16   0.873    -.2155468    .2536839
                                            age |   .0013179   .0545291     0.02   0.981    -.1056223    .1082581
                                          agesq |   .0003056    .000605     0.51   0.614    -.0008809    .0014921
                                                |
                                         cohort |
                                     1964-1973  |   .5862433   .3077719     1.90   0.057    -.0173463    1.189833
                                     1974-1983  |    1.01426   .4388562     2.31   0.021     .1535936    1.874927
                                     1984-1993  |   1.402392   .5997558     2.34   0.019      .226175    2.578608
                                                |
                                         period |
                                     2012-2014  |  -.0401117    .181343    -0.22   0.825    -.3957542    .3155308
                                     2016-2017  |   .2895471   .1937657     1.49   0.135    -.0904583    .6695524
------------------------------------------------+----------------------------------------------------------------
/woman                                          |
                                           cut1 |  -2.069591   1.625566                     -5.257586    1.118403
                                           cut2 |  -.4816368   1.625974                     -3.670431    2.707158
                                           cut3 |   1.003396   1.620462                     -2.174587    4.181379
-----------------------------------------------------------------------------------------------------------------
I am testing whether the coefficients for the interaction terms are equal to each other and these are the results.

Code:
test [man_id3]0.spouse#0.economic  = [woman_id3]0.spouse#0.economic

Adjusted Wald test

 ( 1)  [man_id3]0.spouse#0b.economic - [woman_id3]0.spouse#0b.economic = 0

       F(  1,  1986) =    9.34
            Prob > F =    0.0023

. 
. test [man_id3]0.spouse#1.economic  = [woman_id3]0.spouse#1.economic

Adjusted Wald test

 ( 1)  [man_id3]0.spouse#1.economic - [woman_id3]0.spouse#1.economic = 0

       F(  1,  1986) =    1.00
            Prob > F =    0.3172
Am I correct in interpreting those as:
  • The first test means we can reject the null that both coefficients are equal to one another
  • We cannot reject the null that both coefficients are equal to each other. Specifically, having a spouse that works and being financially insecure leads to a more traditional ideology for both men and women. As in there is no difference between the two coefficients and both coefficients are negatively associated with ideology.