I am running a logistic FE regression to estimate a the effect of a 'treatment' using a generalized difference-in-difference model and a binary outcome variable. Its a two period model - pre and post treatment.
Different individuals are treated at different calendar times and are thus, the 'exposure' variable captures for each individual the length in days that they are in the treated group.
My data looks as follows:Code:
* Example generated by -dataex-. To install: ssc install dataex clear input double studypersonid float(treat post exposure) double opioidpois float age 103336 1 0 2319 0 35.666668 103336 1 1 730 1 37.416668 103338 1 0 2137 0 45.41667 103338 1 1 912 0 47.16667 103342 1 0 1834 0 37 103342 1 1 1215 0 37.75 103344 0 0 3049 0 29.875 103344 0 1 3049 0 31.916666 103345 0 0 3049 0 58.75 103345 0 1 3049 1 59.10417 103346 1 0 2021 0 56 103346 1 1 1028 1 58.75 103347 0 0 3049 0 30 103347 0 1 3049 1 31.25 103350 0 0 3049 0 56.95025 103350 0 1 3049 0 59.62333 103351 0 0 3049 0 44.83333 103351 0 1 3049 1 46.72222 103355 0 0 3049 0 43.31452 103355 0 1 3049 1 44.97222 103365 1 0 1969 0 57 103365 1 1 1080 1 59.66667 103370 1 0 1842 0 35.583332 103370 1 1 1207 0 39.16667 103374 0 0 3049 1 31.166666 103374 0 1 3049 0 31.75 103375 1 0 1961 0 37.583332 103375 1 1 1088 1 38.64583 103389 0 0 3049 0 25.875 103389 0 1 3049 0 28.114584 103391 1 0 1901 1 34.666668 103391 1 1 1148 1 35.875 103394 0 0 3049 1 43.33333 103394 0 1 3049 0 45 103396 0 0 3049 0 21.916666 103396 0 1 3049 1 24.833334 103399 1 0 1906 1 55.55555 103399 1 1 1143 0 57.66667 103401 1 0 2173 0 35.666668 103401 1 1 876 0 37.583336 103402 1 0 2064 1 47.66667 103402 1 1 985 0 50.38095 103403 0 0 3049 0 36.795597 103403 0 1 3049 1 40.27778 103404 0 0 3049 0 38.75 103404 0 1 3049 0 40.25 103408 0 0 3049 0 32.666668 103408 0 1 3049 0 34.5 103413 0 0 3049 0 57.86111 103413 0 1 3049 1 59.98214 103418 0 0 3049 0 21.916666 103418 0 1 3049 1 24.02778 103420 0 0 3049 1 35.814816 103420 0 1 3049 1 39.32143 103421 1 0 1932 0 32.416668 103421 1 1 1117 0 33.333332 103423 0 0 3049 0 24.25 103423 0 1 3049 0 25.166666 103425 1 0 2390 0 21.416666 103425 1 1 659 1 23.625 103428 0 0 3049 0 27.75 103428 0 1 3049 1 29.819445 103430 1 0 2082 0 40.25 103430 1 1 967 1 41.66667 103435 1 0 2053 0 30.416666 103435 1 1 996 0 31.375 103440 1 0 1905 0 20.916666 103440 1 1 1144 0 22 103441 0 0 3049 0 55.51042 103441 0 1 3049 0 56.85049 103442 0 0 3049 1 36.166668 103442 0 1 3049 0 37.5 103449 0 0 3049 1 19.583334 103449 0 1 3049 0 20.75 103454 1 0 1898 0 49.52778 103454 1 1 1151 1 51.83333 103456 1 0 2030 0 52.33334 103456 1 1 1019 1 54.08334 103462 0 0 3049 1 53.31723 103462 0 1 3049 0 57.53472 103472 1 0 1880 0 38.44444 103472 1 1 1169 1 39.19445 103475 0 0 3049 0 24.680555 103475 0 1 3049 0 27.29167 103484 0 0 3049 0 35.333332 103484 0 1 3049 0 36.25 103488 1 0 2062 0 34.5 103488 1 1 987 0 35.083332 103489 0 0 3049 0 36.229168 103489 0 1 3049 1 38 103492 0 0 3049 1 29.666666 103492 0 1 3049 1 30.423077 103497 0 0 3049 0 56.02778 103497 0 1 3049 0 56.58334 103498 0 0 3049 0 48.33333 103498 0 1 3049 0 48.75 103500 0 0 3049 0 31.5 103500 0 1 3049 0 34 103505 1 0 2126 0 33.583332 103505 1 1 923 1 36.041668 end
Code:
. eststo raw1: xtlogit opioidpois i.post did age, fe note: multiple positive outcomes within groups encountered. note: 609 groups (1,218 obs) dropped because of all positive or all negative outcomes. Iteration 0: log likelihood = -481.84658 Iteration 1: log likelihood = -384.481 Iteration 2: log likelihood = -383.05408 Iteration 3: log likelihood = -383.05124 Iteration 4: log likelihood = -383.05124 Conditional fixed-effects logistic regression Number of obs = 1,706 Group variable: studypersonid Number of groups = 853 Obs per group: min = 2 avg = 2.0 max = 2 LR chi2(3) = 416.41 Log likelihood = -383.05124 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ opioidpois | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.post | .6571757 .2257941 2.91 0.004 .2146274 1.099724 did | 1.332142 .1859222 7.17 0.000 .967741 1.696543 age | .0764154 .0991872 0.77 0.441 -.1179879 .2708186 ------------------------------------------------------------------------------ . eststo margin1: margins, dydx(did) post Average marginal effects Number of obs = 1,706 Model VCE : OIM Expression : Pr(opioidpois|fixed effect is 0), predict(pu0) dy/dx w.r.t. : did ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- did | .0565268 .1390073 0.41 0.684 -.2159225 .3289761 ------------------------------------------------------------------------------
Sincerely,
Sumedha.
0 Response to Equivalent of 'exposure' variable for xtlogit regression for diff-in-diff
Post a Comment