Hello. We have data, which from visual inspection, has the outcome variable (summarized over a group of counties) over time varying between levels of a dichotomous variable (PTELL), where another dichotomous variable (Growthno) = 0. But does not vary over time between levels of the same variable (PTELL) where Growthno=1. Graphs are below to demonstrate the difference.
In order to test whether there is a significant effect of PTELL (1 and 0) over time on Outcome, and if it interacts with Growthno (1 and 0), ran fixed effects model using panel data:
. * Set Outcome variable
. global Outcome RatioofSPDSchooltaxestoall
. * Set data as panel data
. sort CountyNo YearNum
. xtset CountyNo YearNum
Panel variable: CountyNo (strongly balanced)
Time variable: YearNum, 1988 to 2020
Delta: 1 unit
. xtdescribe
CountyNo: 1, 2, ..., 102 n = 81
YearNum: 1988, 1989, ..., 2020 T = 33
Delta(YearNum) = 1 unit
Span(YearNum) = 33 periods
(CountyNo*YearNum uniquely identifies each observation)
Distribution of T_i: min 5% 25% 50% 75% 95% max
33 33 33 33 33 33 33
Freq. Percent Cum. | Pattern
---------------------------+-----------------------------------
81 100.00 100.00 | 111111111111111111111111111111111
---------------------------+-----------------------------------
81 100.00 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
. xtsum CountyNo YearNum PTELL
Variable | Mean Std. dev. Min Max | Observations
-----------------+--------------------------------------------+----------------
CountyNo overall | 52.19753 29.12861 1 102 | N = 2673
between | 29.30462 1 102 | n = 81
within | 0 52.19753 52.19753 | T = 33
| |
YearNum overall | 2004 9.523686 1988 2020 | N = 2673
between | 0 2004 2004 | n = 81
within | 9.523686 1988 2020 | T = 33
| |
PTELL overall | .3333333 .4714927 0 1 | N = 2673
between | .4743416 0 1 | n = 81
within | 0 .3333333 .3333333 | T = 33
.xtreg $Outcome PTELL Growthno, fe
note: PTELL omitted because of collinearity.
note: Growthno omitted because of collinearity.
Fixed-effects (within) regression Number of obs = 2,673
Group variable: CountyNo Number of groups = 81
R-squared: Obs per group:
Within = . min = 33
Between = . avg = 33.0
Overall = . max = 33
F(0,2592) = 0.00
corr(u_i, Xb) = . Prob > F = .
------------------------------------------------------------------------------
RatioofSPD~l | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
PTELL | 0 (omitted)
Growthno | 0 (omitted)
_cons | .6630764 .0005525 1200.21 0.000 .6619931 .6641598
-------------+----------------------------------------------------------------
sigma_u | .05000966
sigma_e | .02856317
rho | .75402503 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(80, 2592) = 101.16 Prob > F = 0.0000
Both Growthno and PTELL are omitted because of collinearity. However, all tests for association between the variables show no association:
. correlate $Outcome CountyNo PTELL Growthno
(obs=2,673)
| Ratioo~l CountyNo PTELL Growthno
-------------+------------------------------------
RatioofSPD~l | 1.0000
CountyNo | 0.1827 1.0000
PTELL | 0.1888 0.1310 1.0000
Growthno | -0.0190 -0.0608 0.0000 1.0000
.
. mean $Outcome, over(PTELL)
Mean estimation Number of obs = 2,673
------------------------------------------------------------------------------------
| Mean Std. err. [95% conf. interval]
-----------------------------------+------------------------------------------------
c.RatioofSPDSchooltaxestoall@PTELL |
0 | .6554512 .0014099 .6526867 .6582157
1 | .6783269 .0016265 .6751375 .6815164
------------------------------------------------------------------------------------
.
. mean $Outcome, over(Growthno)
Mean estimation Number of obs = 2,673
---------------------------------------------------------------------------------------
| Mean Std. err. [95% conf. interval]
--------------------------------------+------------------------------------------------
c.RatioofSPDSchooltaxestoall@Growthno |
0 | .6639776 .0012925 .6614433 .6665119
1 | .6617657 .0019544 .6579335 .6655979
---------------------------------------------------------------------------------------
.
. tab PTELL Growthno
| Growthno
PTELL | 0 1 | Total
-----------+----------------------+----------
0 | 1,056 726 | 1,782
1 | 528 363 | 891
-----------+----------------------+----------
Total | 1,584 1,089 | 2,673
Also, the VIFs are 1.
. quietly regress $Outcome PTELL Growthno
.
. vif
Variable | VIF 1/VIF
-------------+----------------------
Growthno | 1.00 1.000000
PTELL | 1.00 1.000000
-------------+----------------------
Mean VIF | 1.00
I cannot figure out why there is collinearity. Or perhaps I am setting up the model wrong? Any insight would be helpful.
Array
Array
Related Posts with Problems Diagnosing Collinearity
xtgee how to create a linear graph with confidence interval for the adjusted modelI am running xtgee to assess the association between change in heart dimension (pch_rveda) and time …
Exploratory Factor AnalysisHi, I'm using exploratory factor analysis on a 5 point Likert Scale. The problem I'm facing is that…
Local macro in "forvalues" functionMy first post here, but have used this forum extensively in the past to trouble shoot. However, can'…
-mi estimate- used for analysis of imputed variables only?I have used multiple imputations on 2 variables, say a and b. Specifically, for some simplified mod…
Making marginsplots equal size with graph combineHi Statalist, I'm struggling with a graphing issue perhaps someone can help me with. I'm trying to …
Subscribe to:
Post Comments (Atom)
0 Response to Problems Diagnosing Collinearity
Post a Comment