Hello!

I'm writing a thesis on how director reputation changes overtime. Director reputation is derived from market cap of the companies the individual director is holding seats in. I ran both an OLS and a GLS regression and get very different but significant results. I have very limited background in data science and therefore have trouble understanding which model is best suited for my research question. Any help or feedback would be greatly appreciated.

I ran a test for autocorrelation (below) and I tried running the test for heteroskedasticity but I get an error that my stata version only allows up to 800 rows. However to my understanding my data should be homoscedastic.
Code:
. xtserial DirRep YearVar

Wooldridge test for autocorrelation in panel data
H0: no first-order autocorrelation
    F(  1,    6811) =   3121.669
           Prob > F =      0.0000
Below you can find the regression results and I've included an example of my data set.

Code:
. reg DirRep YearVar

      Source |       SS           df       MS      Number of obs   =    50,484
-------------+----------------------------------   F(1, 50482)     =    244.00
       Model |  157338.357         1  157338.357   Prob > F        =    0.0000
    Residual |  32552654.4    50,482   644.83686   R-squared       =    0.0048
-------------+----------------------------------   Adj R-squared   =    0.0048
       Total |  32709992.7    50,483  647.940747   Root MSE        =    25.394

------------------------------------------------------------------------------
      DirRep | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
     YearVar |    .659354   .0422111    15.62   0.000     .5766199    .7420882
       _cons |    60.9483   .2171544   280.67   0.000     60.52267    61.37392
------------------------------------------------------------------------------
Code:
. xtreg DirRep YearVar, re

Random-effects GLS regression                   Number of obs     =     50,484
Group variable: DirectorID                      Number of groups  =      8,035

R-squared:                                      Obs per group:
     Within  = 0.0016                                         min =          1
     Between = 0.0376                                         avg =        6.3
     Overall = 0.0048                                         max =         10

                                                Wald chi2(1)      =      49.53
corr(u_i, X) = 0 (assumed)                      Prob > chi2       =     0.0000

------------------------------------------------------------------------------
      DirRep | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
     YearVar |  -.0896029   .0127312    -7.04   0.000    -.1145557   -.0646501
       _cons |    61.7649   .2896927   213.21   0.000     61.19711    62.33269
-------------+----------------------------------------------------------------
     sigma_u |  25.341588
     sigma_e |  6.7111548
         rho |  .93446266   (fraction of variance due to u_i)
------------------------------------------------------------------------------
Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input double DirectorID byte YearVar int(DirYOB Network) byte(NoNed ExecVar) double DirRep
  216931  1 1951 4313 1 0                 61
  216931  2 1951 4313 1 0                 64
  216931  3 1951 4313 1 0                 62
  216931  4 1951 4313 1 0                 60
  216931  5 1951 4313 1 0                 65
  722610  1 1939  635 1 0                 96
  722610  2 1939  635 1 0                 97
  722610  3 1939  635 1 0                 97
  722610  4 1939  635 1 0                 97
  722610  5 1939  635 1 0                 97
  722610  6 1939  635 1 0                 96
  722610  7 1939  635 1 0                 97
  722610  8 1939  635 1 0                 96
  722610  9 1939  635 1 0                 96
  722610 10 1939  635 1 0                 96
  722650  1 1945 2968 1 0                 85
  722650  2 1945 2968 1 0                 82
  722650  3 1945 2968 1 0                 82
  722650  4 1945 2968 1 0                 82
  722650  5 1945 2968 1 0                 83
  722650  6 1945 2968 1 0                 85
  722650  7 1945 2968 1 0                 84
  722650  8 1945 2968 1 0                 85
  722650  9 1945 2968 1 0                 82
 1050210  1 1955 1176 1 0                 71
 1050210  2 1955 1176 1 0                 68
 1050210  3 1955 1176 1 0                 67
 1050210  4 1955 1176 1 0                 68
 1050210  5 1955 1176 1 0                 77
 1050210  6 1955 1176 1 0                 83
 1050210  7 1955 1176 1 0                 81
 1050210  8 1955 1176 1 0                 79
 1050210  9 1955 1176 1 0                 77
 2224030  1 1950 1081 1 1                 90
 2224030  2 1950 1081 1 1                 88
 2224030  3 1950 1081 1 1                 88
 2224030  4 1950 1081 1 1                 90
 2224030  5 1950 1081 1 1                 89
 2224030  6 1950 1081 1 1                 89
 2224030  7 1950 1081 1 1                 89
 2224030  8 1950 1081 1 1                 90
 2224030  9 1950 1081 1 1                 87
 2224030 10 1950 1081 1 1                 87
 2224190  1 1954  326 1 1                 52
 2224190  2 1954  326 1 1                 52
 2224190  3 1954  326 1 1                 48
 2224190  4 1954  326 1 1                 42
 2224200  1 1947  204 1 0                 52
 2224200  2 1947  204 1 0                 52
 2224200  3 1947  204 1 0                 48
 2224200  4 1947  204 1 0                 42
 2224220  1 1951  849 2 1                 84
 2224220  2 1951  849 2 1                 85
 2224220  3 1951  849 2 1               85.5
 2224220  4 1951  849 2 1                 84
 2224220  5 1951  849 2 1                 84
 2224220  6 1951  849 2 1                 82
 2224220  7 1951  849 2 1                 81
 2224220  8 1951  849 2 1                 74
 2224220  9 1951  849 2 1                 76
 2224220 10 1951  849 2 1                 73
 2224240  1 1938    0 1 0                 70
 2224240  2 1938    0 1 0                 76
 2224240  3 1938    0 1 0                 78
 2224240  4 1938    0 1 0                 77
 2224240  5 1938    0 1 0                 79
 2224240  6 1938    0 1 0                 78
 2224490  1 1960 1331 1 0                 16
 2224490  2 1960 1331 1 0                 16
 2224490  3 1960 1331 1 0 28.000000000000004
 2224490  4 1960 1331 1 0                 33
 2224490  5 1960 1331 1 0                 27
 2224490  6 1960 1331 1 0                 37
 2224490  7 1960 1331 1 0                 36
 2224660  1 1940  152 1 0                 54
 2224660  2 1940  152 1 0                 49
 2224660  3 1940  152 1 0                 36
 2224660  4 1940  152 1 0                 50
 2224660  5 1940  152 1 0  56.00000000000001
 2224660  6 1940  152 1 0                 45
 2224660  7 1940  152 1 0                 46
 2224710  1 1959 1119 1 1                 90
 5354000  1 1953 1405 1 0                 23
 5354000  2 1953 1405 1 0                 15
 5354000  3 1953 1405 1 0                 10
 5354000  4 1953 1405 1 0                  5
 5354570  1 1965  377 1 0                 50
 5354570  2 1965  377 1 0                 50
 5354570  3 1965  377 1 0                 53
 5354600  1 1959  766 1 1                 44
 5354600  2 1959  766 1 1                 44
 5354600  3 1959  766 1 1                 47
 5354600  4 1959  766 1 1                 46
 5354600  5 1959  766 1 1                 48
10509380  1 1967  699 1 0                 65
10509380  2 1967  699 1 0                 60
11223500  1 1945 7042 1 0                 92
11223500  2 1945 7042 1 0                 92
11223500  3 1945 7042 1 0                 92
11223500  4 1945 7042 1 0                 88
end