Dear All,
I want to update my traditional DiD analyses with Callaway and Sant’Anna's (2021) semi-parametric DiD estimator using the csdid command. Here is a dataex of my sample:

Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input float(emp_ratio_sa intsmall_ta_1 intsmall_tb_1 intsmall_ta_2 intsmall_tb_2 intsmall_ta_3 intsmall_tb_3 intsmall_ta_4 intsmall_tb_4 intsmall_ta_5 intsmall_tb_5 intsmall_ta_6 intsmall_tb_6 intsmall_0 statefip time treat_qpdmp eventT)
.7219443 0 0 0 0 0 0 0 0 0 0 0 0 0 1  96 0 6
.7270641 0 0 0 0 0 0 0 0 0 0 0 0 0 1  97 0 6
 .722241 0 0 0 0 0 0 0 0 0 0 0 0 0 1  98 0 6
 .731342 0 0 0 0 0 0 0 0 0 0 0 0 0 1  99 0 6
.7264431 0 0 0 0 0 0 0 0 0 0 0 0 0 1 100 0 6
.7278489 0 0 0 0 0 0 0 0 0 0 0 0 0 1 101 0 6
.7415584 0 0 0 0 0 0 0 0 0 0 0 0 0 1 102 0 6
.7661154 0 0 0 0 0 0 0 0 0 0 0 0 0 1 103 0 6
 .742871 0 0 0 0 0 0 0 0 0 0 0 0 0 1 104 0 6
.7310079 0 0 0 0 0 0 0 0 0 0 0 0 0 1 105 0 6
.7459943 0 0 0 0 0 0 0 0 0 0 0 0 0 1 106 0 6
.7434144 0 0 0 0 0 0 0 0 0 0 0 0 0 1 107 0 6
.7512739 0 0 0 0 0 0 0 0 0 0 0 0 0 1 108 0 6
.7619339 0 0 0 0 0 0 0 0 0 0 0 0 0 1 109 0 6
.7568708 0 0 0 0 0 0 0 0 0 0 0 0 0 1 110 0 6
.7509231 0 0 0 0 0 0 0 0 0 0 0 0 0 1 111 0 6
  .75106 0 0 0 0 0 0 0 0 0 0 0 0 0 1 112 0 6
.7469623 0 0 0 0 0 0 0 0 0 0 0 0 0 1 113 0 6
.7410953 0 0 0 0 0 0 0 0 0 0 0 0 0 1 114 0 6
.7331818 0 0 0 0 0 0 0 0 0 0 0 0 0 1 115 0 6
.7517717 0 0 0 0 0 0 0 0 0 0 0 0 0 1 116 0 6
.7682488 0 0 0 0 0 0 0 0 0 0 0 0 0 1 117 0 6
.7614667 0 0 0 0 0 0 0 0 0 0 0 0 0 1 118 0 6
.7746972 0 0 0 0 0 0 0 0 0 0 0 0 0 1 119 0 6
.7701825 0 0 0 0 0 0 0 0 0 0 0 0 0 1 120 0 6
.7691069 0 0 0 0 0 0 0 0 0 0 0 0 0 1 121 0 6
.7497196 0 0 0 0 0 0 0 0 0 0 0 0 0 1 122 0 6
.7749722 0 0 0 0 0 0 0 0 0 0 0 0 0 1 123 0 6
.7229774 0 0 0 0 0 0 0 0 0 0 0 0 0 1 124 0 6
.7317652 0 0 0 0 0 0 0 0 0 0 0 0 0 1 125 0 6
   .7542 0 0 0 0 0 0 0 0 0 0 0 0 0 1 126 0 6
.7434831 0 0 0 0 0 0 0 0 0 0 0 0 0 1 127 0 6
.7431633 0 0 0 0 0 0 0 0 0 0 0 0 0 1 128 0 6
.7390506 0 0 0 0 0 0 0 0 0 0 0 0 0 1 129 0 6
.7738222 0 0 0 0 0 0 0 0 0 0 0 0 0 1 130 0 6
.7451106 0 0 0 0 0 0 0 0 0 0 0 0 0 1 131 0 6
.7595577 0 0 0 0 0 0 0 0 0 0 0 0 0 1 132 0 6
.7639228 0 0 0 0 0 0 0 0 0 0 0 0 0 1 133 0 6
.7485735 0 0 0 0 0 0 0 0 0 0 0 0 0 1 134 0 6
.7524864 0 0 0 0 0 0 0 0 0 0 0 0 0 1 135 0 6
.7646362 0 0 0 0 0 0 0 0 0 0 0 0 0 1 136 0 6
.7876217 0 0 0 0 0 0 0 0 0 0 0 0 0 1 137 0 6
.7759739 0 0 0 0 0 0 0 0 0 0 0 0 0 1 138 0 6
.7897649 0 0 0 0 0 0 0 0 0 0 0 0 0 1 139 0 6
.7795818 0 0 0 0 0 0 0 0 0 0 0 0 0 1 140 0 6
.7496525 0 0 0 0 0 0 0 0 0 0 0 0 0 1 141 0 6
.7717182 0 0 0 0 0 0 0 0 0 0 0 0 0 1 142 0 6
.7859297 0 0 0 0 0 0 0 0 0 0 0 0 0 1 143 0 6
.7857348 0 0 0 0 0 0 0 0 0 0 0 0 0 1 144 0 6
.7631013 0 0 0 0 0 0 0 0 0 0 0 0 0 1 145 0 6
.8003568 0 0 0 0 0 0 0 0 0 0 0 0 0 1 146 0 6
 .790067 0 0 0 0 0 0 0 0 0 0 0 0 0 1 147 0 6
.7887953 0 0 0 0 0 0 0 0 0 0 0 0 0 1 148 0 6
 .804588 0 0 0 0 0 0 0 0 0 0 0 0 0 1 149 0 6
.7865897 0 0 0 0 0 0 0 0 0 0 0 0 0 1 150 0 6
.7946309 0 0 0 0 0 0 0 0 0 0 0 0 0 1 151 0 6
.7958547 0 0 0 0 0 0 0 0 0 0 0 0 0 1 152 0 6
.7819211 0 0 0 0 0 0 0 0 0 0 0 0 0 1 153 0 6
.7804796 0 0 0 0 0 0 0 0 0 0 0 0 0 1 154 0 6
.7998914 0 0 0 0 0 0 0 0 0 0 0 0 0 1 155 0 6
 .808333 0 0 0 0 0 0 0 0 0 0 0 0 0 1 156 0 6
.8037804 0 0 0 0 0 0 0 0 0 0 0 0 0 1 157 0 6
.8006392 0 0 0 0 0 0 0 0 0 0 0 0 0 1 158 0 6
.7885816 0 0 0 0 0 0 0 0 0 0 0 0 0 1 159 0 6
.8076813 0 0 0 0 0 0 0 0 0 0 0 0 0 1 160 0 6
.7850609 0 0 0 0 0 0 0 0 0 0 0 0 0 1 161 0 6
.7776859 0 0 0 0 0 0 0 0 0 0 0 0 0 1 162 0 6
.7701354 0 0 0 0 0 0 0 0 0 0 0 0 0 1 163 0 6
.7665312 0 0 0 0 0 0 0 0 0 0 0 0 0 1 164 0 6
.7779756 0 0 0 0 0 0 0 0 0 0 0 0 0 1 165 0 6
.7685159 0 0 0 0 0 0 0 0 0 0 0 0 0 1 166 0 6
.7648834 0 0 0 0 0 0 0 0 0 0 0 0 0 1 167 0 6
.7512071 0 0 0 0 0 0 0 0 0 0 0 0 0 1 168 0 6
.7527735 0 0 0 0 0 0 0 0 0 0 0 0 0 1 169 0 6
.7590218 0 0 0 0 0 0 0 0 0 0 0 0 0 1 170 0 6
.7660882 0 0 0 0 0 0 0 0 0 0 0 0 0 1 171 0 6
.7786498 0 0 0 0 0 0 0 0 0 0 0 0 0 1 172 0 6
.7688466 0 0 0 0 0 0 0 0 0 0 0 0 0 1 173 0 6
.7708621 0 0 0 0 0 0 0 0 0 0 0 0 0 1 174 0 6
 .764181 0 0 0 0 0 0 0 0 0 0 0 0 0 1 175 0 6
.7689334 0 0 0 0 0 0 0 0 0 0 0 0 0 1 176 0 6
.7696679 0 0 0 0 0 0 0 0 0 0 0 0 0 1 177 0 6
.7451332 0 0 0 0 0 0 0 0 0 0 0 0 0 1 178 0 6
 .755814 0 0 0 0 0 0 0 0 0 0 0 0 0 1 179 0 6
.7509971 0 0 0 0 0 0 0 0 0 0 0 0 0 1 180 0 6
.7730986 0 0 0 0 0 0 0 0 0 0 0 0 0 1 181 0 6
.7907968 0 0 0 0 0 0 0 0 0 0 0 0 0 1 182 0 6
.7697361 0 0 0 0 0 0 0 0 0 0 0 0 0 1 183 0 6
.7392074 0 0 0 0 0 0 0 0 0 0 0 0 0 1 184 0 6
.7659248 0 0 0 0 0 0 0 0 0 0 0 0 0 1 185 0 6
 .767098 0 0 0 0 0 0 0 0 0 0 0 0 0 1 186 0 6
.7616657 0 0 0 0 0 0 0 0 0 0 0 0 0 1 187 0 6
.7849947 0 0 0 0 0 0 0 0 0 0 0 0 0 1 188 0 6
.7597136 0 0 0 0 0 0 0 0 0 0 0 0 0 1 189 0 6
.7601928 0 0 0 0 0 0 0 0 0 0 0 0 0 1 190 0 6
.7775874 0 0 0 0 0 0 0 0 0 0 0 0 0 1 191 0 6
.7807354 0 0 0 0 0 0 0 0 0 0 0 0 0 1 192 0 6
.7515444 0 0 0 0 0 0 0 0 0 0 0 0 0 1 193 0 6
.7349452 0 0 0 0 0 0 0 0 0 0 0 0 0 1 194 0 6
.7434267 0 0 0 0 0 0 0 0 0 0 0 0 0 1 195 0 6
end
format %tq time

Initially, I successfully ran the DiD and was able to calculate the total effect in each event-time period of the policy in "small geographies" using margins:
Code:
            foreach outcome in `outcomes' {
                
            use "$fin_data/fig5_data_illicit.dta", clear
            
            forval i=2/6 {
                
                reghdfe     `outcome'     i.cq tb_6 tb_5 tb_4 tb_3 tb_2 t_0 ta_1     ///
                                        ta_2 ta_3 ta_4 ta_5 ta_6 smallillicit     ///
                                        intsmall_tb_6 intsmall_tb_5             ///
                                        intsmall_tb_4 intsmall_tb_3             ///
                                        intsmall_tb_2 intsmall_0                 ///
                                        intsmall_ta_1 intsmall_ta_2             ///
                                        intsmall_ta_3 intsmall_ta_4             ///
                                        intsmall_ta_5 intsmall_ta_6             ///
                                        [fweight=civpop], ///
                                        absorb(i.statefip) vce(cluster statefip)
                
                margins,     expression(_b[tb_`i']+_b[intsmall_tb_`i']) post 
                qui         esttab, ci 
                mat         ci_tb`i'    =    r(coefs)
                
            }
}
Now I try to do the same with csdid (I am new to the command) as follows, but am not sure how to specify the margins after csdid, getting the following error:

Code:
.         foreach outcome in `outcomes' {
  2.                     
.                 use "$fin_data/fig5_data_illicit.dta", clear
  3.                 est clear
  4.                 csdid `outcome' intsmall*, ivar(statefip) time(time) gvar(treat_qpdmp) agg(event) 
  5.                 
.                 *store event study statistics/estimates 
.                 estat   event , window(-6, 6) esave(m1) replace // save only the prior 6 and post 6 estimates
  6.                 
.                 **#: MARGINS TEST
.                 margins, expression(_b[e(b)[1,3]])                      // THE PROBLEM HERE IS THAT NOT SURE WHICH COEFICEIENTS IN OUTPUT TO USE TO GET THE TOTAL EFFECT 
  7.                         
.                 *load and store event study stats in a matrix and save matrix as .dta file
.                 estimates use   m1
  8.                 mat list                r(table)
  9.                 matrix                  table = r(table)
 10.                 matsave                 table, replace saving path("$fin_data")
 11.                         
.                 *load event study stats .dta file for formatting. Goal is to create 2way graph
.                 use "$fin_data/table.dta", clear 
 12.                         
.                 * drop extraneous rows and vars
.                 drop if                 _rowname == "eform" | _rowname == "df"
 13.                 drop                    Pre_avg Post_avg
 14.                         
.                 * rename and reshape for formatting reasons 
.                 rename  (Tm6 Tm5 Tm4 Tm3 Tm2 Tm1 Tp0 Tp1 Tp2 Tp3 Tp4 Tp5 Tp6)                           ///
>                                 (T0  T1  T2  T3  T4  T5  T6  T7  T8  T9  T10 T11 T12)
 15.                 reshape long T, i(_rowname) j(time)
 16.                         
.                 * keep only coef and CI bands estimates. merge into one .dta file
.                 keep if _rowname == "b" | _rowname == "ll" | _rowname == "ul"
 17.                 preserve 
 18.                         keep if _rowname == "ll" 
 19.                         rename T ci_lower
 20.                         tempfile ll 
 21.                         save `ll'
 22.                 restore 
 23.                 preserve        
 24.                         keep if _rowname == "ul"
 25.                         rename T ci_upper
 26.                         tempfile ul 
 27.                         save `ul'
 28.                 restore
 29.                         
.                 keep if         _rowname == "b"
 30.                 rename          T coef
 31.                         
.                 * merge in the lower CI estimate column 
.                 merge 1:1       time using `ll'
 32.                 drop _merge 
 33.                         
.                 * merge in the upper CI estimate column 
.                 merge 1:1 time using `ul'
 34.                 drop _merge _rowname 
 35.                         
.                 * define time value labels and apply 
.                 label define time_csdid 0 "-6" 1 "-5" 2"-4" 3 "-3" 4 "-2" 5 "-1"        ///
>                                                                 6 "0" 7 "+1" 8 "+2" 9 "+3" 10 "+4" 11 "+5" 12 "+6"
 36.                 label values time time_csdid
 37.                         
.                 
.                 graph twoway                                                                                                                    ///
>                                 (rcap ci_upper ci_lower time,                                                                   ///
>                                 lstyle(thin) lcolor(gs13) lwidth(*2) msize(vtiny))                              ///
>                                 (scatter coef time,                                                             ///
>                                 graphregion(color(white)) bgcolor(white)                                                ///
>                                 msymbol(circle) msize(small) mcolor(purple)                                     ///
>                                 title("Difference: `cpsquarterly_`outcome''")                                   ///
>                                 xtitle("`xtitle'", size(small) height(5))                                               ///
>                                 ytitle("`c_`outcome''")                                                                                 ///
>                                 xlabel(0(1)12,labsize(vsmall) valuelabel)                                               ///
>                                 ylabel(,labsize(vsmall) nogrid angle(0))                                                ///
>                                 yline(0, lpattern(dot) lwidth(thin) lcolor(black))                              ///
>                                 xline(5, lwidth(vthin) lcolor(black))                                                   ///
>                                 plotregion(lstyle(none)) graphregion(margin(zero))                              ///
>                                 legend(off)),                                                                                                   ///
>                                 name("csdid_`outcome'_g3", replace)     
 38.         
.                 graph export "$graphs/Figure 5/`date'/csdid_`outcome'_diff.png", replace
 39.         }
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
.....................................
Difference-in-difference with Multiple Time Periods

                                                         Number of obs = 7,344
Outcome model  : weighted least squares
Treatment model: inverse probability tilting
------------------------------------------------------------------------------
             | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
       T-128 |  -.0038994    .002398    -1.63   0.104    -.0085994    .0008007
       T-127 |    .011263   .0069984     1.61   0.108    -.0024537    .0249797
       T-126 |  -.0029164   .0060814    -0.48   0.632    -.0148358    .0090029
       T-125 |  -.0071741   .0041964    -1.71   0.087    -.0153989    .0010508
       T-124 |   .0086744   .0026999     3.21   0.001     .0033827    .0139661
       T-123 |  -.0029752   .0028089    -1.06   0.290    -.0084805    .0025302
       T-122 |  -.0049747   .0044493    -1.12   0.264    -.0136952    .0037457
       T-121 |   .0024769   .0040247     0.62   0.538    -.0054114    .0103653
       T-120 |   .0024723    .003154     0.78   0.433    -.0037093    .0086539
       T-119 |  -.0035079   .0033814    -1.04   0.300    -.0101354    .0031195
       T-118 |   .0034128   .0032696     1.04   0.297    -.0029954    .0098211
       T-117 |    .004966    .001937     2.56   0.010     .0011696    .0087624
       T-116 |  -.0013375   .0029865    -0.45   0.654    -.0071908    .0045159
       T-115 |  -.0001271   .0021956    -0.06   0.954    -.0044305    .0041763
       T-114 |    .001878   .0031095     0.60   0.546    -.0042166    .0079726
       T-113 |  -.0015993   .0028235    -0.57   0.571    -.0071332    .0039346
       T-112 |   .0035643   .0045386     0.79   0.432    -.0053312    .0124598
       T-111 |   .0022065   .0032561     0.68   0.498    -.0041752    .0085883
       T-110 |  -.0061921   .0021869    -2.83   0.005    -.0104784   -.0019058
       T-109 |  -.0028732   .0023366    -1.23   0.219     -.007453    .0017065
       T-108 |  -.0017538   .0016822    -1.04   0.297    -.0050508    .0015433
       T-107 |   .0002055   .0024355     0.08   0.933     -.004568    .0049791
       T-106 |   .0007294   .0025281     0.29   0.773    -.0042256    .0056844
       T-105 |   -.002054   .0025307    -0.81   0.417    -.0070141    .0029061
       T-104 |  -.0023996    .002338    -1.03   0.305    -.0069819    .0021827
       T-103 |  -.0011283   .0031629    -0.36   0.721    -.0073274    .0050708
       T-102 |   .0029173   .0022172     1.32   0.188    -.0014284     .007263
       T-101 |   -.001756   .0030409    -0.58   0.564     -.007716     .004204
       T-100 |  -.0033694   .0027438    -1.23   0.219    -.0087472    .0020085
        T-99 |  -.0029343   .0027502    -1.07   0.286    -.0083247     .002456
        T-98 |  -.0005361   .0028091    -0.19   0.849    -.0060418    .0049695
        T-97 |  -.0021415   .0021108    -1.01   0.310    -.0062787    .0019956
        T-96 |  -.0000833   .0033721    -0.02   0.980    -.0066924    .0065259
        T-95 |   .0018972   .0028361     0.67   0.504    -.0036615    .0074558
        T-94 |  -.0038235   .0033355    -1.15   0.252    -.0103609     .002714
        T-93 |  -.0012526   .0043483    -0.29   0.773    -.0097751    .0072699
        T-92 |   .0027288   .0027234     1.00   0.316     -.002609    .0080666
        T-91 |  -.0012465   .0031355    -0.40   0.691    -.0073919    .0048989
        T-90 |  -.0013619   .0039355    -0.35   0.729    -.0090753    .0063515
        T-89 |   .0051595   .0029894     1.73   0.084    -.0006996    .0110186
        T-88 |  -.0019034   .0037745    -0.50   0.614    -.0093013    .0054945
        T-87 |  -.0045874     .00252    -1.82   0.069    -.0095266    .0003518
        T-86 |  -.0012883   .0033857    -0.38   0.704    -.0079241    .0053475
        T-85 |   .0075664   .0024828     3.05   0.002     .0027002    .0124325
        T-84 |   .0024097   .0038059     0.63   0.527    -.0050498    .0098692
        T-83 |  -.0004293    .002227    -0.19   0.847    -.0047942    .0039355
        T-82 |  -.0010582   .0019803    -0.53   0.593    -.0049394    .0028231
        T-81 |  -.0023748   .0019575    -1.21   0.225    -.0062115    .0014619
        T-80 |   .0024216    .003036     0.80   0.425    -.0035287     .008372
        T-79 |  -.0001846   .0035462    -0.05   0.958     -.007135    .0067657
        T-78 |    .001593   .0030387     0.52   0.600    -.0043628    .0075488
        T-77 |   -.003404   .0029436    -1.16   0.248    -.0091733    .0023653
        T-76 |   .0000364   .0030397     0.01   0.990    -.0059213    .0059941
        T-75 |   .0065255   .0028417     2.30   0.022     .0009559    .0120951
        T-74 |  -.0028602    .002865    -1.00   0.318    -.0084755    .0027552
        T-73 |   .0011511   .0028124     0.41   0.682    -.0043611    .0066632
        T-72 |  -.0033078   .0035737    -0.93   0.355    -.0103121    .0036965
        T-71 |   .0018136   .0028645     0.63   0.527    -.0038006    .0074279
        T-70 |   .0003638   .0030569     0.12   0.905    -.0056276    .0063552
        T-69 |   .0014643    .002361     0.62   0.535    -.0031631    .0060917
        T-68 |   .0008133    .003283     0.25   0.804    -.0056213    .0072478
        T-67 |  -.0038067   .0027904    -1.36   0.172    -.0092757    .0016623
        T-66 |  -.0009422    .003207    -0.29   0.769    -.0072279    .0053434
        T-65 |   .0017713   .0029168     0.61   0.544    -.0039454    .0074881
        T-64 |   .0027834   .0033562     0.83   0.407    -.0037945    .0093614
        T-63 |   .0003457   .0030793     0.11   0.911    -.0056897    .0063811
        T-62 |  -.0002905    .003587    -0.08   0.935    -.0073209    .0067399
        T-61 |   .0035518   .0022845     1.55   0.120    -.0009257    .0080293
        T-60 |  -.0007902   .0029157    -0.27   0.786    -.0065049    .0049244
        T-59 |   .0040283   .0032535     1.24   0.216    -.0023484    .0104049
        T-58 |  -.0063999   .0026296    -2.43   0.015    -.0115538   -.0012461
        T-57 |   .0028872   .0026871     1.07   0.283    -.0023793    .0081538
        T-56 |  -.0014128   .0023458    -0.60   0.547    -.0060105    .0031849
        T-55 |  -.0011947   .0024568    -0.49   0.627      -.00601    .0036205
        T-54 |   .0020811   .0020269     1.03   0.305    -.0018915    .0060537
        T-53 |  -.0004961   .0032295    -0.15   0.878    -.0068257    .0058336
        T-52 |  -.0006216   .0027893    -0.22   0.824    -.0060886    .0048454
        T-51 |  -.0005572   .0031187    -0.18   0.858    -.0066697    .0055553
        T-50 |   .0047685   .0021391     2.23   0.026     .0005759    .0089611
        T-49 |  -.0052805   .0030655    -1.72   0.085    -.0112887    .0007277
        T-48 |   .0025296   .0026271     0.96   0.336    -.0026195    .0076787
        T-47 |  -.0020436   .0025257    -0.81   0.418    -.0069939    .0029068
        T-46 |  -.0003554   .0023396    -0.15   0.879     -.004941    .0042301
        T-45 |   .0019743    .002164     0.91   0.362    -.0022671    .0062158
        T-44 |  -.0010374     .00281    -0.37   0.712    -.0065449    .0044701
        T-43 |   .0058304   .0024319     2.40   0.017      .001064    .0105968
        T-42 |  -.0026484   .0036348    -0.73   0.466    -.0097725    .0044757
        T-41 |   .0001173   .0036966     0.03   0.975     -.007128    .0073626
        T-40 |  -.0024488   .0032077    -0.76   0.445    -.0087357    .0038381
        T-39 |  -.0010829   .0017788    -0.61   0.543    -.0045693    .0024034
        T-38 |  -.0012993   .0026665    -0.49   0.626    -.0065255    .0039268
        T-37 |   .0032848   .0025825     1.27   0.203    -.0017767    .0083464
        T-36 |  -.0053405   .0025026    -2.13   0.033    -.0102455   -.0004355
        T-35 |   .0006545   .0031029     0.21   0.833    -.0054271    .0067361
        T-34 |   .0023185   .0017974     1.29   0.197    -.0012044    .0058414
        T-33 |   -.001526   .0030538    -0.50   0.617    -.0075114    .0044594
        T-32 |   .0003437   .0031169     0.11   0.912    -.0057652    .0064527
        T-31 |  -.0047286   .0026527    -1.78   0.075    -.0099279    .0004707
        T-30 |   .0039166   .0033308     1.18   0.240    -.0026117    .0104449
        T-29 |   .0061783   .0031426     1.97   0.049     .0000189    .0123377
        T-28 |  -.0004335   .0031523    -0.14   0.891    -.0066119     .005745
        T-27 |  -.0020271   .0028577    -0.71   0.478     -.007628    .0035738
        T-26 |   .0018796   .0025069     0.75   0.453    -.0030339    .0067931
        T-25 |  -.0001574   .0029059    -0.05   0.957    -.0058528     .005538
        T-24 |    .001797   .0031501     0.57   0.568     -.004377    .0079711
        T-23 |   .0010855   .0034263     0.32   0.751    -.0056299     .007801
        T-22 |  -.0084413   .0043402    -1.94   0.052    -.0169479    .0000653
        T-21 |   .0039316   .0031939     1.23   0.218    -.0023282    .0101915
        T-20 |   .0053024   .0023553     2.25   0.024      .000686    .0099187
        T-19 |   -.000722   .0038188    -0.19   0.850    -.0082068    .0067627
        T-18 |  -.0041015   .0040248    -1.02   0.308    -.0119899    .0037869
        T-17 |  -.0012231   .0024455    -0.50   0.617    -.0060163      .00357
        T-16 |   -.000033   .0033951    -0.01   0.992    -.0066873    .0066213
        T-15 |   .0072438   .0025245     2.87   0.004     .0022958    .0121917
        T-14 |  -.0006471   .0024552    -0.26   0.792    -.0054593    .0041651
        T-13 |  -.0045405   .0022248    -2.04   0.041    -.0089009     -.00018
        T-12 |  -.0057636   .0028684    -2.01   0.045    -.0113856   -.0001417
        T-11 |   .0059804   .0039886     1.50   0.134    -.0018371    .0137979
        T-10 |  -.0030996    .003193    -0.97   0.332    -.0093579    .0031586
         T-9 |   .0007201   .0032885     0.22   0.827    -.0057252    .0071653
         T-8 |   .0023677   .0023576     1.00   0.315    -.0022531    .0069884
         T-7 |  -.0003027   .0029223    -0.10   0.917    -.0060304     .005425
         T-6 |  -.0023616   .0026732    -0.88   0.377    -.0076009    .0028778
         T-5 |   .0018408   .0033694     0.55   0.585     -.004763    .0084447
         T-4 |  -.0006476   .0029742    -0.22   0.828     -.006477    .0051818
         T-3 |   .0010017   .0033283     0.30   0.763    -.0055217    .0075251
         T-2 |   .0029037   .0037752     0.77   0.442    -.0044956     .010303
         T-1 |  -.0061838   .0032727    -1.89   0.059    -.0125982    .0002306
         T+0 |   .0081809   .0028068     2.91   0.004     .0026796    .0136822
         T+1 |  -.0023625    .003672    -0.64   0.520    -.0095594    .0048344
         T+2 |  -.0040996   .0034869    -1.18   0.240    -.0109339    .0027346
         T+3 |   .0019913   .0044057     0.45   0.651    -.0066437    .0106263
         T+4 |  -.0039832   .0044561    -0.89   0.371     -.012717    .0047507
         T+5 |  -.0011873   .0050038    -0.24   0.812    -.0109946    .0086199
         T+6 |   .0015952    .005285     0.30   0.763    -.0087632    .0119535
         T+7 |   .0014604   .0065849     0.22   0.824    -.0114458    .0143665
         T+8 |  -.0045589   .0066347    -0.69   0.492    -.0175626    .0084449
         T+9 |   .0008087   .0055703     0.15   0.885     -.010109    .0117264
        T+10 |   .0002163   .0048391     0.04   0.964    -.0092682    .0097008
        T+11 |    .000389   .0059787     0.07   0.948     -.011329    .0121071
        T+12 |  -.0005101   .0062377    -0.08   0.935    -.0127358    .0117156
        T+13 |   .0041018    .005362     0.76   0.444    -.0064074    .0146111
        T+14 |    .010907   .0060666     1.80   0.072    -.0009833    .0227973
        T+15 |   .0049799   .0047421     1.05   0.294    -.0043144    .0142742
        T+16 |   .0057155     .00659     0.87   0.386    -.0072006    .0186317
        T+17 |    .003413   .0079198     0.43   0.667    -.0121096    .0189356
        T+18 |  -.0016702   .0066542    -0.25   0.802    -.0147123    .0113719
        T+19 |  -.0003214    .005816    -0.06   0.956    -.0117204    .0110777
        T+20 |   .0014124   .0077852     0.18   0.856    -.0138463    .0166712
        T+21 |  -.0028021    .008095    -0.35   0.729     -.018668    .0130638
        T+22 |  -.0016207   .0081708    -0.20   0.843    -.0176351    .0143938
        T+23 |   .0019917   .0077358     0.26   0.797    -.0131703    .0171536
        T+24 |   .0019442   .0064272     0.30   0.762    -.0106528    .0145412
        T+25 |   .0024827   .0071242     0.35   0.727    -.0114805    .0164459
        T+26 |  -.0179738   .0159027    -1.13   0.258    -.0491425    .0131949
        T+27 |  -.0074342   .0139019    -0.53   0.593    -.0346814    .0198129
        T+28 |   .0050378   .0118902     0.42   0.672    -.0182667    .0283422
        T+29 |   .0113423   .0182562     0.62   0.534    -.0244392    .0471238
        T+30 |   .0302177   .0040121     7.53   0.000     .0223541    .0380814
------------------------------------------------------------------------------
Control: Never Treated

See Callaway and Sant'Anna (2021) for details
ATT by Periods Before and After treatment
Event Study:Dynamic effects
file m1.ster saved
------------------------------------------------------------------------------
             | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
     Pre_avg |  -.0005745   .0006988    -0.82   0.411     -.001944    .0007951
    Post_avg |   .0000192    .003332     0.01   0.995    -.0065113    .0065498
         Tm6 |  -.0023616   .0026732    -0.88   0.377    -.0076009    .0028778
         Tm5 |   .0018408   .0033694     0.55   0.585     -.004763    .0084447
         Tm4 |  -.0006476   .0029742    -0.22   0.828     -.006477    .0051818
         Tm3 |   .0010017   .0033283     0.30   0.763    -.0055217    .0075251
         Tm2 |   .0029037   .0037752     0.77   0.442    -.0044956     .010303
         Tm1 |  -.0061838   .0032727    -1.89   0.059    -.0125982    .0002306
         Tp0 |   .0081809   .0028068     2.91   0.004     .0026796    .0136822
         Tp1 |  -.0023625    .003672    -0.64   0.520    -.0095594    .0048344
         Tp2 |  -.0040996   .0034869    -1.18   0.240    -.0109339    .0027346
         Tp3 |   .0019913   .0044057     0.45   0.651    -.0066437    .0106263
         Tp4 |  -.0039832   .0044561    -0.89   0.371     -.012717    .0047507
         Tp5 |  -.0011873   .0050038    -0.24   0.812    -.0109946    .0086199
         Tp6 |   .0015952    .005285     0.30   0.763    -.0087632    .0119535
------------------------------------------------------------------------------
warning: option expression() does not contain option predict() or xb().
variable T not found
r(111);

end of do-file

r(111);
So I have 2 basic questions:
(1) Am I correct in retaining only the prior 6 and post 6 estimates if I am interested in considering the trends in outcome 6 periods prior to the policy and 6 periods post the policy (see line 5 of my code)? My suspicion is that this is incorrect as the event time estimates for the 6 periods pre and post must be a weighted average of the 159 coefficients in the output table?
(2) How can I do a post csdid margins, similar to "margins, expression(_b[tb_`i']+_b[intsmall_tb_`i']) post " to calculate the total effect at each event time.

Many thanks in advance for your help. And apologies for some basic questions.
Sincerely,
Sumedha