I am a first-time user of STATA. I am trying to use system GMM to estimate a social welfare function. I don't know how to deal with the problem of number of instruments that is larger than the number of groups. I will be glad if I can be guided on how to address the problem. The STATA commands I used and the results are as follows:
import excel "C:\Users\ACER\Documents\phd prop\FLORENCE\PhD Proceed\swf
> model_phd.xlsx", sheet("SWF_E_G100_una_STATA") cellrange(A1:P67) firstro
> w case(lower)
(16 vars, 66 obs)
. describe
Contains data
Observations: 66
Variables: 16
--------------------------------------------------------------------------
Variable Storage Display Value
name type format label Variable label
--------------------------------------------------------------------------
region str13 %13s Region
year int %10.0g Year
socialwelfare double %10.0g Social Welfare
meanincome double %10.0g Mean Income
ginicomplement double %10.0g Gini Complement
y_1 byte %10.0g Y_1
y_2 byte %10.0g Y_2
y_3 byte %10.0g Y_3
y_4 byte %10.0g Y_4
y_5 byte %10.0g Y_5
y_6 byte %10.0g Y_6
y_7 byte %10.0g Y_7
y_8 byte %10.0g Y_8
y_9 byte %10.0g Y_9
y_10 byte %10.0g Y_10
y_11 byte %10.0g Y_11
--------------------------------------------------------------------------
Sorted by:
Note: Dataset has changed since last saved.
.
.
. . xtset Regnam year
Panel variable: Regnam (strongly balanced)
Time variable: year, 2010 to 2020
Delta: 1 unit
eststo: xtabond2 socialwelfareg L.socialwelfareg meanincomeg ginicomplem
> entg y*, twostep robust nomata iv(meanincomeg ginicomplementg) gmm(L.soc
> ialwelfareg, collapse)
y_1 dropped because of collinearity.
y_2 dropped because of collinearity.
y_11 dropped because of collinearity.
Building GMM instruments..
Estimating.
Warning: Two-step estimated covariance matrix of moment conditions is sing
> ular.
Number of instruments may be large relative to number of groups.
Using a generalized inverse to calculate optimal weighting matrix for two-
> step estimation.
Computing Windmeijer finite-sample correction.......
Performing specification tests.
Dynamic panel-data estimation, two-step system GMM
--------------------------------------------------------------------------
> ----
Group variable: Regnam Number of obs =
> 60
Time variable : year Number of groups =
> 6
Number of instruments = 13 Obs per group: min =
> 10
Wald chi2(11) = 777649.73 avg = 1
> 0.00
Prob > chi2 = 0.000 max =
> 10
--------------------------------------------------------------------------
> ----
| Corrected
socialwelf~g | Coefficient std. err. z P>|z| [95% conf. inter
> val]
-------------+------------------------------------------------------------
> ----
socialwelf~g |
L1. | .9976556 .0336563 29.64 0.000 .9316904 1.06
> 3621
|
meanincomeg | .0055871 .0285993 0.20 0.845 -.0504664 .061
> 6407
ginicomple~g | -.014318 .0999197 -0.14 0.886 -.2101571 .181
> 5211
year | -1.67e-22 1.49e-11 -0.00 1.000 -2.92e-11 2.92
> e-11
y_3 | .053454 .0865675 0.62 0.537 -.1162152 .223
> 1231
y_4 | 0 (omitted)
y_5 | 0 (omitted)
y_6 | .1317248 .0409457 3.22 0.001 .0514727 .21
> 1977
y_7 | 0 (omitted)
y_8 | 0 (omitted)
y_9 | 0 (omitted)
y_10 | 0 (omitted)
_cons | 0 (omitted)
--------------------------------------------------------------------------
> ----
Instruments for first differences equation
Standard
D.(meanincomeg ginicomplementg)
GMM-type (missing=0, separate instruments for each period unless collaps
> ed)
L(1/.).L.socialwelfareg collapsed
Instruments for levels equation
Standard
_cons
meanincomeg ginicomplementg
GMM-type (missing=0, separate instruments for each period unless collaps
> ed)
D.L.socialwelfareg collapsed
--------------------------------------------------------------------------
> ----
Arellano-Bond test for AR(1) in first differences: z = -1.82 Pr > z = 0
> .069
Arellano-Bond test for AR(2) in first differences: z = 0.84 Pr > z = 0
> .402
--------------------------------------------------------------------------
> ----
Sargan test of overid. restrictions: chi2(0) = 0.00 Prob > chi2 =
> .
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(0) = 0.00 Prob > chi2 =
> .
(Robust, but weakened by many instruments.)
(est1 stored)
Thank you.
Florence Ijagbone
Related Posts with Number of instruments more than number of groups in estimation result
Creating dummy variables using tabulate (Too many values)Hi, I would like to create about 20,000 dummy variables from one variable studentID. When I used th…
Multilevel bootstrappingHello, I am interested in bootstrapping multilevel models like this example, from the Stata manual …
OLS and fixed effectsHi, Using OLS, I have panel data of 480 firms (10years). reg lev prof size tang growth liq i.lifec…
ppml_panel_sg and RESET testDear Statalist, I am trying to estimate the RESET and the Park test with the ppml_panel_sg command.…
Pooled cross section dataHi Stata users I am working with pooled cross section data (randomly sampled 26,000 SMEs over the la…
Subscribe to:
Post Comments (Atom)
0 Response to Number of instruments more than number of groups in estimation result
Post a Comment