For my master thesis I am conducting research about the effects of the digital divide on the educational attainment in the European continent. For this research I gathered data of 29 countries over a period of 14 years
My dependent variable is the % of the population that compelted tertiary education( age group 24-34)
Independent are : Population that has acces to broadband internet (in %), gini score(from 0 to 100, lower means better)
Then I looked up for some control variables: Population (total) & mean income , (still thinking about adding unemployment rate as another control var)
Upon using fixed and random effect
Fixed:
Code:
. xtreg educ population gini broadband incomeMean, fe Fixed-effects (within) regression Number of obs = 398 Group variable: country Number of groups = 29 R-squared: Obs per group: Within = 0.7214 min = 11 Between = 0.3053 avg = 13.7 Overall = 0.3832 max = 14 F(4,365) = 236.33 corr(u_i, Xb) = -0.3124 Prob > F = 0.0000 ------------------------------------------------------------------------------ educ | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- population | -9.70e-08 2.92e-07 -0.33 0.740 -6.71e-07 4.77e-07 gini | -.150809 .1070503 -1.41 0.160 -.3613219 .0597038 broadband | .2142734 .0098261 21.81 0.000 .1949504 .2335963 incomeMean | .0004968 .0000762 6.52 0.000 .000347 .0006467 _cons | 20.37698 5.580489 3.65 0.000 9.403037 31.35093 -------------+---------------------------------------------------------------- sigma_u | 7.6449458 sigma_e | 2.5569006 rho | .89939297 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(28, 365) = 91.84 Prob > F = 0.0000
Code:
xtreg educ population gini broadband incomeMean, re Random-effects GLS regression Number of obs = 398 Group variable: country Number of groups = 29 R-squared: Obs per group: Within = 0.7206 min = 11 Between = 0.3157 avg = 13.7 Overall = 0.3976 max = 14 Wald chi2(4) = 945.94 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ educ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- population | -8.62e-08 5.70e-08 -1.51 0.130 -1.98e-07 2.54e-08 gini | -.0609734 .1026333 -0.59 0.552 -.262131 .1401841 broadband | .2166468 .0096297 22.50 0.000 .1977729 .2355207 incomeMean | .0004461 .0000651 6.85 0.000 .0003184 .0005737 _cons | 18.24877 3.490679 5.23 0.000 11.40716 25.09037 -------------+---------------------------------------------------------------- sigma_u | 6.9655036 sigma_e | 2.5569006 rho | .88125285 (fraction of variance due to u_i) ------------------------------------------------------------------------------ .
Code:
hausman fixed random Note: the rank of the differenced variance matrix (3) does not equal the number of coefficients being tested (4); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale. ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | fixed random Difference Std. err. -------------+---------------------------------------------------------------- population | -9.70e-08 -8.62e-08 -1.08e-08 2.86e-07 gini | -.150809 -.0609734 -.0898356 .0304333 broadband | .2142734 .2166468 -.0023734 .0019549 incomeMean | .0004968 .0004461 .0000508 .0000395 ------------------------------------------------------------------------------ b = Consistent under H0 and Ha; obtained from xtreg. B = Inconsistent under Ha, efficient under H0; obtained from xtreg. Test of H0: Difference in coefficients not systematic chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 8.95 Prob > chi2 = 0.0299 (V_b-V_B is not positive definite)
Code:
. xtreg educ population gini broadband incomeMean, fe robust Fixed-effects (within) regression Number of obs = 398 Group variable: country Number of groups = 29 R-squared: Obs per group: Within = 0.7214 min = 11 Between = 0.3053 avg = 13.7 Overall = 0.3832 max = 14 F(4,28) = 35.53 corr(u_i, Xb) = -0.3124 Prob > F = 0.0000 (Std. err. adjusted for 29 clusters in country) ------------------------------------------------------------------------------ | Robust educ | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- population | -9.70e-08 4.97e-07 -0.20 0.847 -1.12e-06 9.21e-07 gini | -.150809 .1814625 -0.83 0.413 -.5225182 .2209001 broadband | .2142734 .0252991 8.47 0.000 .1624506 .2660962 incomeMean | .0004968 .0001977 2.51 0.018 .000092 .0009017 _cons | 20.37698 9.725685 2.10 0.045 .4548208 40.29915 -------------+---------------------------------------------------------------- sigma_u | 7.6449458 sigma_e | 2.5569006 rho | .89939297 (fraction of variance due to u_i) ------------------------------------------------------------------------------
Upon adding i.year in the xtreg code like this:
Code:
. xtreg educ population gini broadband incomeMean i.year, fe robust Fixed-effects (within) regression Number of obs = 398 Group variable: country Number of groups = 29 R-squared: Obs per group: Within = 0.7746 min = 11 Between = 0.0199 avg = 13.7 Overall = 0.0545 max = 14 F(17,28) = 24.52 corr(u_i, Xb) = -0.8738 Prob > F = 0.0000 (Std. err. adjusted for 29 clusters in country) ------------------------------------------------------------------------------ | Robust educ | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- population | -8.02e-07 4.62e-07 -1.73 0.094 -1.75e-06 1.45e-07 gini | -.1726822 .165679 -1.04 0.306 -.5120602 .1666957 broadband | .0004282 .0541787 0.01 0.994 -.1105518 .1114082 incomeMean | -.0000562 .0001719 -0.33 0.746 -.0004084 .000296 | year | 2008 | 1.393604 .514999 2.71 0.011 .3386763 2.448531 2009 | 2.785943 .9833509 2.83 0.008 .7716395 4.800246 2010 | 3.947826 1.240529 3.18 0.004 1.406718 6.488935 2011 | 4.918202 1.571527 3.13 0.004 1.699074 8.137329 2012 | 6.289633 1.930353 3.26 0.003 2.335484 10.24378 2013 | 7.574748 2.091623 3.62 0.001 3.290252 11.85924 2014 | 9.325942 2.29589 4.06 0.000 4.623026 14.02886 2015 | 9.79276 2.449228 4.00 0.000 4.775744 14.80978 2016 | 10.65857 2.584618 4.12 0.000 5.364219 15.95292 2017 | 11.28827 2.743002 4.12 0.000 5.669486 16.90705 2018 | 12.10324 2.847884 4.25 0.000 6.269612 17.93686 2019 | 12.90674 3.009904 4.29 0.000 6.741226 19.07224 2020 | 13.88196 3.176958 4.37 0.000 7.374253 20.38966 | _cons | 50.14916 8.640671 5.80 0.000 32.44955 67.84878 -------------+---------------------------------------------------------------- sigma_u | 19.538604 sigma_e | 2.3420248 rho | .98583553 (fraction of variance due to u_i) ----
Code:
. testparm i.year ( 1) 2008.year = 0 ( 2) 2009.year = 0 ( 3) 2010.year = 0 ( 4) 2011.year = 0 ( 5) 2012.year = 0 ( 6) 2013.year = 0 ( 7) 2014.year = 0 ( 8) 2015.year = 0 ( 9) 2016.year = 0 (10) 2017.year = 0 (11) 2018.year = 0 (12) 2019.year = 0 (13) 2020.year = 0 F( 13, 28) = 3.71 Prob > F = 0.0018
Now my question is am I doing this right by adding i.year into the regression? Because it seems that my dependent variables that were significant are not anymore. Also R-Squared here changed drastically but the F stat still says it's significant.
How can I fix this? Help or hints would greatly help me and is enormously appreciated.
Thank you and sorry for this very long message, but I tried to be as clear as possible by adding every step I took.
Kind regards,
Karim
0 Response to Panel Data fixed effects and time effects
Post a Comment