Hello there,
For my master thesis I am conducting research about the effects of the digital divide on the educational attainment in the European continent. For this research I gathered data of 29 countries over a period of 14 years
My dependent variable is the % of the population that compelted tertiary education( age group 24-34)
Independent are : Population that has acces to broadband internet (in %), gini score(from 0 to 100, lower means better)
Then I looked up for some control variables: Population (total) & mean income , (still thinking about adding unemployment rate as another control var)

Upon using fixed and random effect
Fixed:
Code:
. xtreg educ population gini broadband incomeMean, fe

Fixed-effects (within) regression               Number of obs     =        398
Group variable: country                         Number of groups  =         29

R-squared:                                      Obs per group:
     Within  = 0.7214                                         min =         11
     Between = 0.3053                                         avg =       13.7
     Overall = 0.3832                                         max =         14

                                                F(4,365)          =     236.33
corr(u_i, Xb) = -0.3124                         Prob > F          =     0.0000

------------------------------------------------------------------------------
        educ | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
  population |  -9.70e-08   2.92e-07    -0.33   0.740    -6.71e-07    4.77e-07
        gini |   -.150809   .1070503    -1.41   0.160    -.3613219    .0597038
   broadband |   .2142734   .0098261    21.81   0.000     .1949504    .2335963
  incomeMean |   .0004968   .0000762     6.52   0.000      .000347    .0006467
       _cons |   20.37698   5.580489     3.65   0.000     9.403037    31.35093
-------------+----------------------------------------------------------------
     sigma_u |  7.6449458
     sigma_e |  2.5569006
         rho |  .89939297   (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(28, 365) = 91.84                    Prob > F = 0.0000
random:
Code:
 xtreg educ population gini broadband incomeMean, re

Random-effects GLS regression                   Number of obs     =        398
Group variable: country                         Number of groups  =         29

R-squared:                                      Obs per group:
     Within  = 0.7206                                         min =         11
     Between = 0.3157                                         avg =       13.7
     Overall = 0.3976                                         max =         14

                                                Wald chi2(4)      =     945.94
corr(u_i, X) = 0 (assumed)                      Prob > chi2       =     0.0000

------------------------------------------------------------------------------
        educ | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
  population |  -8.62e-08   5.70e-08    -1.51   0.130    -1.98e-07    2.54e-08
        gini |  -.0609734   .1026333    -0.59   0.552     -.262131    .1401841
   broadband |   .2166468   .0096297    22.50   0.000     .1977729    .2355207
  incomeMean |   .0004461   .0000651     6.85   0.000     .0003184    .0005737
       _cons |   18.24877   3.490679     5.23   0.000     11.40716    25.09037
-------------+----------------------------------------------------------------
     sigma_u |  6.9655036
     sigma_e |  2.5569006
         rho |  .88125285   (fraction of variance due to u_i)
------------------------------------------------------------------------------

.
I used the Hausman test to confirm that fixed effects would be the better method to use :
Code:
 hausman fixed random

Note: the rank of the differenced variance matrix (3) does not equal the number of coefficients being tested (4); be sure this is what you expect, or there may be problems
        computing the test.  Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a
        similar scale.

                 ---- Coefficients ----
             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
             |     fixed        random       Difference       Std. err.
-------------+----------------------------------------------------------------
  population |   -9.70e-08    -8.62e-08       -1.08e-08        2.86e-07
        gini |    -.150809    -.0609734       -.0898356        .0304333
   broadband |    .2142734     .2166468       -.0023734        .0019549
  incomeMean |    .0004968     .0004461        .0000508        .0000395
------------------------------------------------------------------------------
                          b = Consistent under H0 and Ha; obtained from xtreg.
           B = Inconsistent under Ha, efficient under H0; obtained from xtreg.

Test of H0: Difference in coefficients not systematic

    chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B)
            =   8.95
Prob > chi2 = 0.0299
(V_b-V_B is not positive definite)
I did add robust to cluster my standard errors and got this as a result:
Code:
. xtreg educ population gini broadband incomeMean, fe robust

Fixed-effects (within) regression               Number of obs     =        398
Group variable: country                         Number of groups  =         29

R-squared:                                      Obs per group:
     Within  = 0.7214                                         min =         11
     Between = 0.3053                                         avg =       13.7
     Overall = 0.3832                                         max =         14

                                                F(4,28)           =      35.53
corr(u_i, Xb) = -0.3124                         Prob > F          =     0.0000

                               (Std. err. adjusted for 29 clusters in country)
------------------------------------------------------------------------------
             |               Robust
        educ | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
  population |  -9.70e-08   4.97e-07    -0.20   0.847    -1.12e-06    9.21e-07
        gini |   -.150809   .1814625    -0.83   0.413    -.5225182    .2209001
   broadband |   .2142734   .0252991     8.47   0.000     .1624506    .2660962
  incomeMean |   .0004968   .0001977     2.51   0.018      .000092    .0009017
       _cons |   20.37698   9.725685     2.10   0.045     .4548208    40.29915
-------------+----------------------------------------------------------------
     sigma_u |  7.6449458
     sigma_e |  2.5569006
         rho |  .89939297   (fraction of variance due to u_i)
------------------------------------------------------------------------------
Now two of my independent variables are significant and overall the model seems also significant if I read the F Stat.

Upon adding i.year in the xtreg code like this:
Code:
. xtreg educ population gini broadband incomeMean i.year, fe robust

Fixed-effects (within) regression               Number of obs     =        398
Group variable: country                         Number of groups  =         29

R-squared:                                      Obs per group:
     Within  = 0.7746                                         min =         11
     Between = 0.0199                                         avg =       13.7
     Overall = 0.0545                                         max =         14

                                                F(17,28)          =      24.52
corr(u_i, Xb) = -0.8738                         Prob > F          =     0.0000

                               (Std. err. adjusted for 29 clusters in country)
------------------------------------------------------------------------------
             |               Robust
        educ | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
  population |  -8.02e-07   4.62e-07    -1.73   0.094    -1.75e-06    1.45e-07
        gini |  -.1726822    .165679    -1.04   0.306    -.5120602    .1666957
   broadband |   .0004282   .0541787     0.01   0.994    -.1105518    .1114082
  incomeMean |  -.0000562   .0001719    -0.33   0.746    -.0004084     .000296
             |
        year |
       2008  |   1.393604    .514999     2.71   0.011     .3386763    2.448531
       2009  |   2.785943   .9833509     2.83   0.008     .7716395    4.800246
       2010  |   3.947826   1.240529     3.18   0.004     1.406718    6.488935
       2011  |   4.918202   1.571527     3.13   0.004     1.699074    8.137329
       2012  |   6.289633   1.930353     3.26   0.003     2.335484    10.24378
       2013  |   7.574748   2.091623     3.62   0.001     3.290252    11.85924
       2014  |   9.325942    2.29589     4.06   0.000     4.623026    14.02886
       2015  |    9.79276   2.449228     4.00   0.000     4.775744    14.80978
       2016  |   10.65857   2.584618     4.12   0.000     5.364219    15.95292
       2017  |   11.28827   2.743002     4.12   0.000     5.669486    16.90705
       2018  |   12.10324   2.847884     4.25   0.000     6.269612    17.93686
       2019  |   12.90674   3.009904     4.29   0.000     6.741226    19.07224
       2020  |   13.88196   3.176958     4.37   0.000     7.374253    20.38966
             |
       _cons |   50.14916   8.640671     5.80   0.000     32.44955    67.84878
-------------+----------------------------------------------------------------
     sigma_u |  19.538604
     sigma_e |  2.3420248
         rho |  .98583553   (fraction of variance due to u_i)
----
with testparm for year:
Code:
. testparm i.year

 ( 1)  2008.year = 0
 ( 2)  2009.year = 0
 ( 3)  2010.year = 0
 ( 4)  2011.year = 0
 ( 5)  2012.year = 0
 ( 6)  2013.year = 0
 ( 7)  2014.year = 0
 ( 8)  2015.year = 0
 ( 9)  2016.year = 0
 (10)  2017.year = 0
 (11)  2018.year = 0
 (12)  2019.year = 0
 (13)  2020.year = 0

       F( 13,    28) =    3.71
            Prob > F =    0.0018

Now my question is am I doing this right by adding i.year into the regression? Because it seems that my dependent variables that were significant are not anymore. Also R-Squared here changed drastically but the F stat still says it's significant.
How can I fix this? Help or hints would greatly help me and is enormously appreciated.
Thank you and sorry for this very long message, but I tried to be as clear as possible by adding every step I took.

Kind regards,
Karim