Dear Stata Members

I have a panel data where my independent variables are highly COLLINEAR(Index1 to Index4). In that case, rather than dropping one or more of the collinear variables, is it legitimate to transform the variables so that we can retain them. I will demonstrate my data and results with example.

Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input float(Index1 Index2 Index3 Index4) long id int year float dep_var
5.46687       .       .       . 1 1999        0
 3.5714 53.3333 49.2386 37.4359 1 2000 .0469986
3.77717       .       .       . 1 2001        0
3.97991  55.102 35.3535 34.1837 1 2002        0
4.09675 56.6326 44.9495 43.3674 1 2003        0
3.94243  55.665 34.6342  44.335 1 2004        0
3.94921 51.4706 33.1707      50 1 2005        0
4.05847 57.0732 37.0732 48.0392 1 2006        0
3.92085 59.2233 33.4951 50.9709 1 2007        0
4.64972 58.7379 36.4078 50.9709 1 2008        0
 4.8054 57.8947 36.8421  45.933 1 2009        0
4.70902 58.3732 33.3333 44.4976 1 2010        0
4.83402 58.7678 37.9147 44.5498 1 2011        0
4.82298 57.8199 40.2844 44.0758 1 2012        0
4.66564 54.9763 44.5498 44.0758 1 2013        0
4.55899 65.3846 45.6731   43.75 1 2014        0
4.52303 68.2692 48.5577 44.2308 1 2015        0
4.86224 66.8269 49.0385 44.2308 1 2016        0
5.33097 68.2692 46.1539 48.5577 1 2017        0
5.62695 69.2308 46.1539 47.1154 1 2018        0
5.89539 71.6346 45.1923 42.7885 1 2019        0
 3.5714 53.3333 49.2386 37.4359 2 2000        .
3.77717       .       .       . 2 2001        0
3.97991  55.102 35.3535 34.1837 2 2002        0
4.09675 56.6326 44.9495 43.3674 2 2003        0
3.94243  55.665 34.6342  44.335 2 2004        .
3.94921 51.4706 33.1707      50 2 2005        .
4.05847 57.0732 37.0732 48.0392 2 2006 .5771455
3.92085 59.2233 33.4951 50.9709 2 2007        .
4.64972 58.7379 36.4078 50.9709 2 2008        .
 4.8054 57.8947 36.8421  45.933 2 2009        0
4.70902 58.3732 33.3333 44.4976 2 2010        0
4.83402 58.7678 37.9147 44.5498 2 2011        0
4.82298 57.8199 40.2844 44.0758 2 2012        0
4.66564 54.9763 44.5498 44.0758 2 2013        0
4.55899 65.3846 45.6731   43.75 2 2014        0
4.52303 68.2692 48.5577 44.2308 2 2015        0
4.86224 66.8269 49.0385 44.2308 2 2016        0
5.33097 68.2692 46.1539 48.5577 2 2017        0
5.62695 69.2308 46.1539 47.1154 2 2018        .
5.89539 71.6346 45.1923 42.7885 2 2019        0
5.46687       .       .       . 3 1999        0
 3.5714 53.3333 49.2386 37.4359 3 2000        .
3.77717       .       .       . 3 2001        .
3.97991  55.102 35.3535 34.1837 3 2002        .
4.09675 56.6326 44.9495 43.3674 3 2003        .
3.94243  55.665 34.6342  44.335 3 2004        .
3.94921 51.4706 33.1707      50 3 2005        .
4.05847 57.0732 37.0732 48.0392 3 2006        .
3.92085 59.2233 33.4951 50.9709 3 2007        0
4.64972 58.7379 36.4078 50.9709 3 2008        0
 4.8054 57.8947 36.8421  45.933 3 2009        .
4.70902 58.3732 33.3333 44.4976 3 2010        0
4.83402 58.7678 37.9147 44.5498 3 2011        0
4.82298 57.8199 40.2844 44.0758 3 2012        0
4.66564 54.9763 44.5498 44.0758 3 2013        .
4.55899 65.3846 45.6731   43.75 3 2014        0
4.52303 68.2692 48.5577 44.2308 3 2015        .
4.86224 66.8269 49.0385 44.2308 3 2016        0
5.33097 68.2692 46.1539 48.5577 3 2017        0
5.62695 69.2308 46.1539 47.1154 3 2018        0
5.89539 71.6346 45.1923 42.7885 3 2019        0
5.46687       .       .       . 4 1999        0
 3.5714 53.3333 49.2386 37.4359 4 2000        0
3.77717       .       .       . 4 2001        0
3.97991  55.102 35.3535 34.1837 4 2002        0
4.09675 56.6326 44.9495 43.3674 4 2003        .
3.94243  55.665 34.6342  44.335 4 2004        0
3.94921 51.4706 33.1707      50 4 2005        0
4.05847 57.0732 37.0732 48.0392 4 2006        0
3.92085 59.2233 33.4951 50.9709 4 2007        0
4.64972 58.7379 36.4078 50.9709 4 2008        0
 4.8054 57.8947 36.8421  45.933 4 2009        0
4.70902 58.3732 33.3333 44.4976 4 2010        0
4.83402 58.7678 37.9147 44.5498 4 2011        0
4.82298 57.8199 40.2844 44.0758 4 2012        0
4.66564 54.9763 44.5498 44.0758 4 2013        0
4.55899 65.3846 45.6731   43.75 4 2014        0
4.52303 68.2692 48.5577 44.2308 4 2015        0
4.86224 66.8269 49.0385 44.2308 4 2016        0
5.33097 68.2692 46.1539 48.5577 4 2017        0
5.62695 69.2308 46.1539 47.1154 4 2018        0
5.89539 71.6346 45.1923 42.7885 4 2019        0
5.46687       .       .       . 5 1999        .
 3.5714 53.3333 49.2386 37.4359 5 2000        .
3.77717       .       .       . 5 2001        0
3.97991  55.102 35.3535 34.1837 5 2002        0
4.09675 56.6326 44.9495 43.3674 5 2003        0
3.94243  55.665 34.6342  44.335 5 2004        .
3.94921 51.4706 33.1707      50 5 2005        0
4.05847 57.0732 37.0732 48.0392 5 2006        .
3.92085 59.2233 33.4951 50.9709 5 2007        0
4.64972 58.7379 36.4078 50.9709 5 2008        .
 4.8054 57.8947 36.8421  45.933 5 2009        0
4.70902 58.3732 33.3333 44.4976 5 2010        0
4.83402 58.7678 37.9147 44.5498 5 2011        0
4.82298 57.8199 40.2844 44.0758 5 2012        0
4.66564 54.9763 44.5498 44.0758 5 2013        0
4.55899 65.3846 45.6731   43.75 5 2014        .
4.52303 68.2692 48.5577 44.2308 5 2015        0
end
label values id id
label def id 1 "000002.SZ", modify
label def id 2 "000004.SZ", modify
label def id 3 "000005.SZ", modify
label def id 4 "000006.SZ", modify
label def id 5 "000007.SZ", modify

Code:
pwcorr dep_var Index1 Index2 Index3 Index4 , sig star(.01)

             |  dep_var   Index1   Index2   Index3   Index4
-------------+---------------------------------------------
     dep_var |   1.0000 
             |
             |
      Index1 |  -0.1242   1.0000 
             |   0.2819
             |
      Index2 |  -0.0867   0.7584*  1.0000 
             |   0.4757   0.0000
             |
      Index3 |  -0.0658   0.3183*  0.5552*  1.0000 
             |   0.5884   0.0021   0.0000
             |
      Index4 |   0.0787   0.1896   0.1301  -0.3035*  1.0000 
             |   0.5172   0.0719   0.2190   0.0034
             |


Code:
 reg dep_var Index1 Index2 Index3 i.id  i.year
note: 2017.year omitted because of collinearity.
note: 2018.year omitted because of collinearity.
note: 2019.year omitted because of collinearity.

      Source |       SS           df       MS      Number of obs   =        70
-------------+----------------------------------   F(22, 47)       =      1.28
       Model |  .123540378        22  .005615472   Prob > F        =    0.2345
    Residual |  .206200354        47  .004387242   R-squared       =    0.3747
-------------+----------------------------------   Adj R-squared   =    0.0819
       Total |  .329740732        69  .004778851   Root MSE        =    .06624

------------------------------------------------------------------------------
     dep_var | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
      Index1 |   .0607583   .2623863     0.23   0.818    -.4670948    .5886114
      Index2 |  -.0082303   .0411951    -0.20   0.843    -.0911041    .0746435
      Index3 |   .0068583   .1109061     0.06   0.951     -.216256    .2299725
             |
          id |
  000004.SZ  |   .0420866   .0246522     1.71   0.094    -.0075072    .0916804
  000005.SZ  |   .0090231   .0272016     0.33   0.742    -.0456995    .0637458
  000006.SZ  |  -.0035913   .0218879    -0.16   0.870     -.047624    .0404413
  000007.SZ  |   .0108503   .0272195     0.40   0.692    -.0439084    .0656089
             |
        year |
       2002  |   .0473329    1.50762     0.03   0.975    -2.985606    3.080272
       2003  |  -.0182899   .4098085    -0.04   0.965    -.8427182    .8061384
       2004  |    .073309   1.573491     0.05   0.963    -3.092147    3.238765
       2005  |   .0441975   1.844819     0.02   0.981    -3.667099    3.755494
       2006  |   .2388757   1.268526     0.19   0.851     -2.31307    2.790822
       2007  |   .1058522   1.615725     0.07   0.948    -3.144567    3.356271
       2008  |   .0398561   1.309828     0.03   0.976    -2.595177    2.674889
       2009  |   .0099532   1.289834     0.01   0.994    -2.584859    2.604765
       2010  |   .0444741   1.660176     0.03   0.979    -3.295369    3.384318
       2011  |   .0087066    1.14843     0.01   0.994    -2.301636    2.319049
       2012  |  -.0146761   .9171183    -0.02   0.987     -1.85968    1.830328
       2013  |  -.0584361   .5495863    -0.11   0.916    -1.164061    1.047189
       2014  |   .0264604   .1801508     0.15   0.884    -.3359562     .388877
       2015  |   .0321464   .3668656     0.09   0.931     -.705892    .7701847
       2016  |  -.0031748   .3119827    -0.01   0.992     -.630803    .6244534
       2017  |          0  (omitted)
       2018  |          0  (omitted)
       2019  |          0  (omitted)
             |
       _cons |  -.0904379   6.801528    -0.01   0.989    -13.77335    13.59247
------------------------------------------------------------------------------

. estat vif

    Variable |       VIF       1/VIF  
-------------+----------------------
      Index1 |    349.95    0.002858
      Index2 |    886.38    0.001128
      Index3 |   6173.44    0.000162
          id |
          2  |      1.47    0.681963
          3  |      1.45    0.691748
          4  |      1.46    0.684869
          5  |      1.45    0.690839
        year |
       2002  |   1953.88    0.000512
       2003  |    109.92    0.009098
       2004  |   1096.42    0.000912
       2005  |   2227.48    0.000449
       2006  |   1053.19    0.000949
       2007  |   2244.14    0.000446
       2008  |   1122.88    0.000891
       2009  |   1430.15    0.000699
       2010  |   2916.77    0.000343
       2011  |   1395.73    0.000716
       2012  |    890.11    0.001123
       2013  |    259.65    0.003851
       2014  |     27.90    0.035844
       2015  |    115.70    0.008643
       2016  |     83.67    0.011952
-------------+----------------------
    Mean VIF |   1106.51
.
So my question is rather than dropping, can we do something to deal with Multicollinearity