Dear all,

I am having some trouble understanding the true R-squared for my fixed effects model. For the below data I want to perform firm (gvkey) fixed effects regression.

Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input float(logtobin_w ESGcompensation tenure) double femaledummy float(independent boardsize) double TOTAL_SEC float(stock_executive option_executive logsales leverage roa_w) double(ESGscore year) long gvkey
  .11830975 .       7.5                  0       .8 10          2477.4176   .2633955  .12278788  7.481996  .26053295  .11522503                  . 2010 1004
 -.18968147 .  7.727273                  0 .8181818 11 2631.8862000000004   .4328289  .07859492  7.637475    .360874   .1014245                  . 2011 1004
 -.06206616 .  7.727273                  0 .8181818 11 1706.0653333333335  .13900936   .1739342  7.681145   .3316019  .11474566                  . 2012 1004
-.017516488 .  8.727273                  0 .8181818 11 2211.0458333333336  .18035705   .2751986  7.618251  .28824732  .11639009                  . 2013 1004
  .12475272 .  9.727273                  0 .8181818 11 2767.3296000000005  .25445083          0   7.37419  .10165016  .05524752                  . 2014 1004
-.016281042 . 10.727273                  0 .8181818 11 2072.3328333333334   .2479061   .2186806  7.416138  .10269745    .094931                  . 2015 1004
   .1741487 0     10.75 .08333333333333333 .8333333 12 2719.3033333333333  .22130963  .13197964  7.477378  .10458081  .09853068              24.84 2016 1004
   .3389418 0  9.583333 .08333333333333333 .8333333 12 2596.2338333333328  .22687325   .1721262  7.466399  .11621959  .08296714              23.81 2017 1004
  .08878828 0 10.583333 .08333333333333333 .8333333 12 1613.2109999999996   .2315839   .1953064  7.626473  .09339573  .10117321              22.62 2018 1004
   .3576642 0  3.181818 .09090909090909091 .9090909 11          7240.1846   .6474589          0 10.621083   .4246824  .18364143              70.36 2015 1045
   .3279516 0  3.692308 .15384615384615385 .9230769 13  6626.606833333334   .6696367          0 10.601125   .4747825   .1527675              70.27 2016 1045
   .3400276 0 4.6923075 .15384615384615385 .9230769 13  6336.568400000003   .7499329          0  10.65034   .4876839  .13248113              72.02 2017 1045
   .2206872 0      5.75 .16666666666666666 .9166667 12  6059.041599999998   .7889238          0 10.704165     .56172   .0925388              69.36 2018 1045
   .1878603 0       6.4                 .2        0 10  6211.196799999999   .7659218          0  10.73134   .5574465  .10040837  71.34000000000002 2019 1045
  .06461501 1  9.636364  .2727272727272727 .9090909 11  3567.396833333333   .2376441          0    8.0906    .298824  .09208658  79.19000000000001 2010 1075
  .10431954 1  9.833333                .25 .9166667 12          4634.7656  .36076725          0  8.083755  .26668325   .0895096              72.13 2011 1075
  .11441843 1       9.8                 .2       .9 10  5922.154799999998   .3203236          0  8.102224   .2551711  .09388095              70.62 2012 1075
   .1143407 1      10.8                 .2       .9 10 3066.1481666666664   .4162558          0   8.14747  .25835332  .09342367  67.78999999999999 2013 1075
  .20094657 1  9.363636 .18181818181818182 .9090909 11  4414.744599999999   .2996751          0  8.158125  .24886835  .08583486              61.63 2014 1075
  .15798543 1      10.7                 .1       .9 10          4144.8194   .3282692          0  8.159215   .2541859  .08976582              68.98 2015 1075
    .217275 1      11.7                 .1       .9 10          5279.9712   .3267494          0  8.160142  .27017725  .08384103  62.47000000000001 2016 1075
   .2351784 1 11.636364 .18181818181818182 .9090909 11           4392.529  .27997512          0  8.179003   .2918555  .08628815  55.73000000000001 2017 1075
  .21915583 1      11.3                 .2       .9 10  4146.410833333334   .3376084          0  8.213719  .29520902  .07676775              63.25 2018 1075
    .225777 1 11.272727 .18181818181818182        0 11  4581.278166666668   .3218178          0  8.152258   .3145051 .068340935              62.58 2019 1075
   .6258997 0  9.833333 .08333333333333333 .9166667 12         12272.8692   .4724094  .05779778 10.467855   .3181561  .17932525  81.90999999999998 2010 1078
   .7224569 1       6.8                 .2       .9 10  9680.794599999997   .3559583 .072812445 10.567495  .25572947  .19975054  83.65999999999998 2011 1078
   .7601307 1  5.090909 .36363636363636365 .9090909 11 11890.849799999998   .3991205  .07130705 10.593477   .3045435   .1869076              80.87 2012 1078
   .5852639 1  6.090909 .36363636363636365 .9090909 11  7548.088600000002  .38093635   .2320279  9.991864  .15274835  .10227458              73.87 2013 1078
   .7529889 0  7.090909 .36363636363636365 .9090909 11          7549.2126   .2302896  .23029397  9.915762   .1900666  .10841914  68.14999999999999 2014 1078
    .736783 0  8.090909 .36363636363636365 .9090909 11  6784.863333333333   .2967345  .29628077  9.923535  .21822193  .11743885              75.64 2015 1078
   .5212999 0  9.090909 .36363636363636365 .9090909 11  8267.837400000002  .27706397  .27710316  9.945253   .4178407  .09446322              79.51 2016 1078
   .6417528 0  9.090909 .36363636363636365 .8181818 11  9900.922285714287  .19566767  .17468856 10.217934   .3662164  .09202623              77.27 2017 1078
   .8903543 0  9.333333  .3333333333333333 .8333333 12 10830.147599999998   .3510712   .3511061 10.328036  .29127774    .112575              72.39 2018 1078
   .6530657 0 4.5555553  .1111111111111111 .7777778  9          3883.2235  .28704077   .2051793  8.778634   .4877115   .1629734               67.7 2010 1161
   .3645646 0  5.111111  .1111111111111111 .8888889  9  5402.038714285714   .3292796   .3075194  8.789965   .4069439   .1495761  64.90999999999998 2011 1161
   .2571971 0       5.6                 .1       .8 10  3749.732000000001   .4543789  .22222343   8.59822      .5105       .056  65.69000000000001 2012 1161
   .4196974 0       4.6                 .1       .7 10  4492.095800000001  .58390486   .1801578 8.5752735  .47452155  .05579894  65.79999999999998 2013 1161
   .4057164 0  4.181818 .09090909090909091 .7272727 11  5496.783333333333  .59413034   .1839726  8.613594   .5872047 .073798776  63.76999999999999 2014 1161
   .6225287 0       3.4                 .2       .6 10          4663.4784   .6716943   .1503329  8.291797   .7275651  .04278551              80.48 2015 1161
  1.4030088 0         5  .2222222222222222 .6666667  9 5291.8571999999995   .6315684  .19050725  8.359838   .4320988  .04278551              71.73 2016 1161
  1.2907536 0       4.5                .25      .75  8          4795.2928  .56837773  .15451786  8.580919   .3940678  .06468926  69.35000000000001 2017 1161
  1.5674034 0  4.111111  .2222222222222222 .7777778  9  5194.050333333334   .5859488   .1699061  8.775703   .2743635  .12949955              68.12 2018 1161
   .6420469 1  7.272727 .18181818181818182 .9090909 11  5596.504399999999  .25204903   .1994436  9.107864   .3056664   .1707698  79.81999999999998 2010 1209
   .5409696 1  7.818182 .18181818181818182 .9090909 11  5197.334600000001   .2258526  .18627685  9.218507   .3192426   .1750719              84.98 2011 1209
   .5037185 1  7.545455  .2727272727272727 .9090909 11  4969.750800000001   .2349808  .18571424  9.170736   .3123576  .13755327  84.45000000000002 2012 1209
    .623949 1  8.545455  .2727272727272727 .9090909 11 3123.1486666666674  .23844536  .20301737   9.22822   .3514602  .13531017              75.51 2013 1209
    .765121 1  5.416667 .16666666666666666 .9166667 12  5653.788166666666  .24315766   .2003613 9.2533045     .34414  .14402303              78.76 2014 1209
   .7700632 1       6.4                 .2       .9 10           5296.816   .3667904  .07949234  9.199775  .33713534  .16095217  79.16999999999999 2015 1209
   .8828155 1     4.375                .25     .875  8          5156.0642   .3697537          0 9.1616125   .3447852  .16982825              73.57 2016 1209
   .8072674 1     5.375                .25     .875  8  6279.959199999998   .4150184          0  9.010376  .21458586  .13681555              79.04 2017 1209
   .8526819 1     6.375                .25     .875  8          6434.1898   .4485046          0  9.097194   .1987976  .14923117  84.77999999999999 2018 1209
  .17025746 .  11.88889  .2222222222222222 .8888889  9 1961.2088333333336   .3100396  .11475078  8.251221   .3058247  .14258662                  . 2010 1230
    .252262 .      10.8                 .3       .8 10          1907.7008   .2622375  .13603291 8.3705015  .25156882  .14142445                  . 2011 1230
  .25676554 .      11.8                 .3       .8 10  2261.820833333334  .28720525  .08877523  8.446127  .18746594  .14459582                  . 2012 1230
  .41635615 . 11.727273  .2727272727272727 .8181818 11 2087.1042000000007    .374419  .15566844  8.509967  .14919493  .15690304                  . 2013 1230
   .6560078 .      10.3                 .4       .9 10 1872.3498571428568  .27144995  .14502862  8.588211  .12991425   .1983498                  . 2014 1230
   .7763644 0  7.454545 .45454545454545453 .9090909 11 2361.6336000000006  .42100295  .10166698  8.630165  .10500536   .2525639  55.67999999999999 2015 1230
   .5901425 0  8.454545 .45454545454545453 .9090909 11 2692.6487999999995   .4581262  .08749834  8.687948  .29753062  .18359767              64.86 2016 1230
   .4026812 0  9.555555  .4444444444444444 .8888889  9 3092.7891666666665   .5221846  .09153342  8.978786  .23919925  .16294228  60.86999999999999 2017 1230
   .2950791 0  7.363636 .45454545454545453 .9090909 11  2582.232833333334   .3301577  .11376386  9.019664   .1927236  .10749634              54.26 2018 1230
   .2051185 . 11.666667  .1111111111111111 .7777778  9 1088.4212000000005   .2609991   .1322854  7.451241   .2197327  .08765724                  . 2011 1254
   .5058599 .      11.5                 .1       .8 10  1201.115142857143  .28250012   .1015951  7.352441  .27173635  .14945073                  . 2012 1254
   .4850742 . 10.857142 .14285714285714285 .8571429  7 1420.2306666666666   .5040103          0  7.400743   .2291917  .13658576                  . 2013 1254
   .5901712 . 11.857142 .14285714285714285 .8571429  7           1798.992    .326683          0  7.446702  .26651448  .14374375                  . 2014 1254
   .6101473 0 12.857142 .14285714285714285 .8571429  7 1884.6286000000002  .36298385          0   7.54163  .25745597  .17541023  34.88999999999999 2015 1254
   .4182765 0 13.857142 .14285714285714285 .8571429  7 1594.1343333333334  .50208896          0  7.571268   .3666088  .11684445               39.5 2016 1254
  .23310487 0        11 .14285714285714285 .7142857  7 2080.5836000000004   .4044619          0  7.624082   .3813571  .09757508  37.67000000000001 2017 1254
   .2245757 0  9.857142 .14285714285714285 .8571429  7          2124.7818   .4033992          0  7.706523     .35237  .08998518 39.300000000000004 2018 1254
  .28666762 0  6.714286  .2857142857142857        0  7 2073.7504000000004   .4096306          0  7.697621   .4298165  .07229212              50.32 2019 1254
   .5978834 1       6.5                 .1       .9 10 10855.913199999997   .3528117   .2853227 10.415413  .17560925   .1248348              49.18 2010 1300
   .5801171 1       6.3                 .1       .9 10          15717.509          0   .2849802  10.50586  .18978597   .1071895              60.96 2011 1300
   .6297287 1       7.3                 .1       .9 10 13103.977199999998  .28917408   .2767683 10.536487  .17910305  .13205744              63.25 2012 1300
   .7847168 1         7                .25 .9166667 12 13788.763600000004 .027408276   .2786295 10.572726  .19432156   .1574777  66.94000000000001 2013 1300
   .8463459 1         8                .25 .9166667 12 11117.501333333334  .21651234  .29472128 10.604256   .1910409   .1617786  53.02999999999998 2014 1300
   .8096887 1      7.75                .25 .9166667 12         13847.0564          0   .3161889 10.560515   .2447076  .16743045              62.37 2015 1300
   .8198145 1      8.75                .25 .9166667 12 11173.043399999997   .3011529   .3437505  10.57903  .29134193  .15441585  66.64999999999999 2016 1300
   .9738825 1  9.076923 .23076923076923078 .8461539 13 11548.070999999998  .21835007  .25763392 10.609897   .3011097   .1555391                 67 2017 1300
   .8560433 1  8.416667                .25 .9166667 12  8241.814571428575   .4841225   .1834174   10.6407  .28065014  .15354924  72.66999999999999 2018 1300
  1.0402052 1  9.416667                .25        0 12  9906.926833333333   .3646107  .19597636 10.510777  .28471854  .14460029  74.06999999999998 2019 1300
   .9323655 0  8.555555                  0 .7777778  9           2140.735   .3200472  .22701335   6.97714  .04778805  .16074465  52.63999999999999 2010 1327
   .6521157 0  9.555555                  0 .7777778  9  2749.407166666667    .427952  .23105904  7.257653 .013800863   .2039374              46.99 2011 1327
     .80136 0 10.555555                  0 .7777778  9 1911.8248333333333   .3996799  .26350126  7.357927          0   .1783866 48.730000000000004 2012 1327
   .7419222 0    11.625                  0      .75  8 2461.6748000000002   .3658626   .2300524  7.491087          0  .19587673              47.07 2013 1327
   1.345916 0    10.375               .125     .875  8               3245   .4701273  .15088746  7.736962          0   .2333378              43.57 2014 1327
  1.4949583 0    11.375               .125     .875  8 3519.5010000000007   .3934705  .20700005  8.088991          0  .29371822              47.31 2015 1327
  1.3172176 0    12.375               .125     .875  8 3090.5408749999992   .4749785   .3120078  8.098339          0  .29371822              41.54 2016 1327
  1.4328263 0        12  .1111111111111111 .7777778  9          4661.9418   .5601915   .1291313  8.202866          0  .29371822  55.72000000000001 2017 1327
   1.248179 0        13  .1111111111111111 .7777778  9  5194.166166666666   .6930379          0  8.260493          0  .29371822              55.49 2018 1327
  1.0762497 0        12  .2222222222222222        0  9           5433.453   .7233093          0  8.124683          0  .29211092  55.11000000000001 2019 1327
  .23008296 1        11 .07692307692307693 .7692308 13 7736.2581999999975   .2331519   .2332289  10.43005   .1577297  .17052774  68.46000000000001 2010 1380
 .020101056 1        12 .15384615384615385 .7692308 13  7501.111999999998   .2473889    .250891  10.55753    .154768   .1661897  73.16999999999999 2011 1380
 -.07162579 1        13 .15384615384615385 .7692308 13  6373.796600000001  .55704385          0 10.537177    .186713  .16677792  69.93000000000004 2012 1380
  .05197859 1  5.894737 .10526315789473684 .9473684 19  6965.755199999999  .53402585          0 10.011624  .13561304   .1438228              69.98 2013 1380
-.029052453 1  7.142857 .14285714285714285 .9285714 14          9405.2334   .3771886  .09429847  9.281451  .15519208   .1422054  74.15999999999998 2014 1380
 -.17600115 1  8.142858 .14285714285714285 .9285714 14  6649.987200000002   .4433318  .11083187  8.800264    .193888  .05588536              76.76 2015 1380
   .1664449 1  9.272727 .18181818181818182 .9090909 11          6101.3272    .432174  .11034811  8.468423  .23779742  .04278551  70.58000000000001 2016 1380
   .1561371 1      8.75 .16666666666666666 .9166667 12 7350.4857999999995   .3766926   .1088413  8.606302   .3018778  .04278551              77.38 2017 1380
  .09665885 1      9.75 .16666666666666666 .9166667 12  6510.368000000001  .39493415  .12856022  8.751949   .3112957  .11864881  76.59000000000002 2018 1380
   .4281915 1 11.181818 .18181818181818182        0 11  8077.180200000002   .3147502  .10647754  8.778788   .3641539  .12744468              78.64 2019 1380
  .25403136 .  10.88889  .2222222222222222 .7777778  9 2314.3152000000005   .3474218  .21813995  8.159303    .090723  .10021309                  . 2010 1410
end
format %ty year
Going:

- reg logtobin_w c.ESGcompensation##c.tenure femaledummy independent boardsize TOTAL_SEC stock_executive option_executive logsales leverage roa_w ESGscore i.year i.gvkey

- areg logtobin_w c.ESGcompensation##c.tenure femaledummy independent boardsize TOTAL_SEC stock_executive option_executive logsales leverage roa_w ESGscore i.year, absorb(gvkey)

yields the same estimates in coefficients and P-values. But more importantly, the R-sq. values are the same. However, if I use:

- xtreg logtobin_w c.ESGcompensation##c.tenure femaledummy independent boardsize TOTAL_SEC stock_executive option_executive logsales leverage roa_w ESGscore i.year, fe vce(cluster gvkey)

the R-sq. is significantly lower. It is even lower than other regressions with industry fixed effects. Those have fewer regressors (as #firms > #industries), so per definition the R-sq. for firm fixed effects should be higher.

Does anyone know what is causing this? Thank you in advance.