I am using Stata SE 17 on Windows 10. I'm conducting a panel data analysis with the goal of investigating the impact of innovation in attracting foreign direct investments (FDI). My dataset consists of 37 EU countries, measured on 14 variables across 14 years. Here is a sample of my dataset:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input str18 COUNTRY int YEAR double(newdocs citedpubbl edupop publicrd venture businessrd nordbusexp pctapps trademarks designs SMEsmax innosales infdi1) long country_n "Austria" 2004 2.2 10.879386829323456 34 .72 .0485 1.53 . 4.804806595897 5.750369762148659 5.96433700911233 53.26164874551972 10.599653308926985 25.66539714709834 2 "Austria" 2005 2 10.90807814642101 20.5 .74 .052000000000000005 1.71 . 5.082864356344017 5.44394195271982 6.113029790484267 54.073638071027744 12.12044275080061 3.1251494779180087 2 "Austria" 2006 2 11.14425359820278 21.2 .72 .044000000000000004 1.73 . 5.365545654591564 7.5000552377227 7.070428505610924 54.88562739653577 13.641232192674234 17.717340682610388 2 "Austria" 2007 1.9 11.766702785799323 21.1 .74 .028000000000000004 1.78 . 5.0537632261303145 7.7373498636957745 9.22138609767386 48.83508332512358 12.442621838711055 1.464380045626025 2 "Austria" 2008 2 11.25539528832986 22.2 .78 .0215 1.88 .46944562318694916 4.99638723207233 7.753349369779991 7.113023003917563 42.78453925371138 11.244011484747876 3.5734768412160807 2 "Austria" 2009 2.15 10.744087790860396 23.5 .81 .0285 1.94 .46944562318694916 4.939011238014344 9.559393223111512 9.190448731846583 42.77785207971112 11.244011484747876 -5.615650034432947 2 "Austria" 2010 2.3 11.092568305056 30.95 .84 .03956166277617255 1.87 .3533407195307009 5.252049058377892 11.693662770783515 8.594888189423665 42.326375213338586 11.916767341477245 5.331213212198524 2 "Austria" 2011 2.2 11.0989727110624 38.4 .8200000000000001 .05062332555234509 1.84 .3533407195307009 5.129995316751745 13.827932318455517 7.999327647000747 42.326375213338586 11.916767341477245 1.2746210241656093 2 "Austria" 2012 2.2 11.0627916896433 38.4 .85 .044624883377768744 2.05 .4575665576828351 4.757594759441145 13.3241487743434 8.298052792230653 44.708133971291865 9.846163545405481 .10489199786555246 2 "Austria" 2013 2.008113571981588 11.082658226067501 38.4 .85 .04394477403736861 2.09 .4575665576828351 4.964945807646287 13.406225799062174 8.000981365169235 44.708133971291865 9.846163545405481 .38737336166369846 2 end label values country_n country_n label def country_n 2 "Austria", modify
Code:
* . xi: regress infdi1 i.country_n newdocs citedpubbl edupop publicrd venture businessrd nordbusexp pctapps trademarks designs > SMEsmax innosales i.country_n _Icountry_n_2-38 (naturally coded; _Icountry_n_2 omitted) note: _Icountry_n_15 omitted because of collinearity. note: _Icountry_n_17 omitted because of collinearity. note: _Icountry_n_23 omitted because of collinearity. note: _Icountry_n_25 omitted because of collinearity. note: _Icountry_n_36 omitted because of collinearity. note: _Icountry_n_37 omitted because of collinearity. Source | SS df MS Number of obs = 309 -------------+---------------------------------- F(42, 266) = 13.80 Model | 146034.029 42 3477.00069 Prob > F = 0.0000 Residual | 67043.2023 266 252.042114 R-squared = 0.6854 -------------+---------------------------------- Adj R-squared = 0.6357 Total | 213077.231 308 691.809193 Root MSE = 15.876 -------------------------------------------------------------------------------- infdi1 | Coefficient Std. err. t P>|t| [95% conf. interval] ---------------+---------------------------------------------------------------- _Icountry_n_3 | -39.68065 10.59999 -3.74 0.000 -60.5512 -18.8101 _Icountry_n_4 | 28.69714 24.12934 1.19 0.235 -18.81165 76.20593 _Icountry_n_5 | -9.110369 22.86466 -0.40 0.691 -54.1291 35.90836 _Icountry_n_6 | 216.9712 22.30024 9.73 0.000 173.0638 260.8787 _Icountry_n_7 | -4.527713 18.12123 -0.25 0.803 -40.20701 31.15158 _Icountry_n_8 | -50.57355 11.24234 -4.50 0.000 -72.70884 -28.43825 _Icountry_n_9 | 6.945694 16.86783 0.41 0.681 -26.26575 40.15714 _Icountry_n_10 | -32.77956 14.4839 -2.26 0.024 -61.29724 -4.26188 _Icountry_n_11 | -35.29605 11.20799 -3.15 0.002 -57.36371 -13.22839 _Icountry_n_12 | -30.76903 10.30141 -2.99 0.003 -51.0517 -10.48636 _Icountry_n_13 | -52.51921 19.5321 -2.69 0.008 -90.97638 -14.06203 _Icountry_n_14 | 3.337269 18.891 0.18 0.860 -33.85764 40.53218 _Icountry_n_15 | 0 (omitted) _Icountry_n_16 | -31.11075 14.9042 -2.09 0.038 -60.45597 -1.765537 _Icountry_n_17 | 0 (omitted) _Icountry_n_18 | -25.14016 13.35924 -1.88 0.061 -51.44347 1.163155 _Icountry_n_19 | 4.665286 23.9956 0.19 0.846 -42.58018 51.91076 _Icountry_n_20 | -36.70157 25.56419 -1.44 0.152 -87.03547 13.63233 _Icountry_n_21 | 134.045 20.08224 6.67 0.000 94.50467 173.5854 _Icountry_n_22 | 201.7102 26.09115 7.73 0.000 150.3388 253.0817 _Icountry_n_23 | 0 (omitted) _Icountry_n_24 | -35.33513 13.78443 -2.56 0.011 -62.47559 -8.194669 _Icountry_n_25 | 0 (omitted) _Icountry_n_26 | -77.66236 15.07972 -5.15 0.000 -107.3531 -47.97157 _Icountry_n_27 | -17.43932 23.78558 -0.73 0.464 -64.27127 29.39263 _Icountry_n_28 | -32.29503 16.40757 -1.97 0.050 -64.60025 .010194 _Icountry_n_29 | -1.508972 23.43871 -0.06 0.949 -47.65798 44.64004 _Icountry_n_30 | -13.44188 24.38399 -0.55 0.582 -61.45206 34.5683 _Icountry_n_31 | -14.65724 23.39618 -0.63 0.532 -60.72251 31.40802 _Icountry_n_32 | 11.82224 13.69928 0.86 0.389 -15.15057 38.79505 _Icountry_n_33 | -23.05757 16.79391 -1.37 0.171 -56.12347 10.00832 _Icountry_n_34 | -43.37165 16.82267 -2.58 0.010 -76.49418 -10.24912 _Icountry_n_35 | -16.72277 15.32675 -1.09 0.276 -46.89995 13.45442 _Icountry_n_36 | 0 (omitted) _Icountry_n_37 | 0 (omitted) _Icountry_n_38 | -58.98577 14.03119 -4.20 0.000 -86.61209 -31.35944 newdocs | 6.546929 2.884637 2.27 0.024 .8673014 12.22656 citedpubbl | 5.621024 1.619945 3.47 0.001 2.431478 8.810571 edupop | 1.00983 .2822136 3.58 0.000 .4541734 1.565487 publicrd | 23.46202 13.69844 1.71 0.088 -3.509142 50.43318 venture | -39.16915 28.68726 -1.37 0.173 -95.65213 17.31383 businessrd | -20.99256 7.292466 -2.88 0.004 -35.35086 -6.634264 nordbusexp | 12.61612 4.261034 2.96 0.003 4.226477 21.00577 pctapps | 1.376031 2.827341 0.49 0.627 -4.190784 6.942846 trademarks | -5.781484 .5329737 -10.85 0.000 -6.830868 -4.732101 designs | 1.289679 .8997131 1.43 0.153 -.4817863 3.061144 SMEsmax | .1067005 .2173757 0.49 0.624 -.3212953 .5346963 innosales | .0906274 .3701102 0.24 0.807 -.6380908 .8193456 _cons | -45.79126 28.25667 -1.62 0.106 -101.4264 9.843927 -------------------------------------------------------------------------------- . pwcorr _Icountry_n_15 _Icountry_n_17 _Icountry_n_23 _Icountry_n_25 _Icountry_n_36 _Icountry_n_37 newdocs citedpubbl edupop p > ublicrd venture businessrd nordbusexp innosmes pctapps trademarks designs newprodsmes newmarksmes innosales | _Icou~15 _Icou~17 _Icou~23 _Icou~25 _Icou~36 _Icou~37 newdocs -------------+--------------------------------------------------------------- _Icountry~15 | 1.0000 _Icountry~17 | -0.0278 1.0000 _Icountry~23 | -0.0278 -0.0278 1.0000 _Icountry~25 | -0.0278 -0.0278 -0.0278 1.0000 _Icountry~36 | -0.0278 -0.0278 -0.0278 -0.0278 1.0000 _Icountry~37 | -0.0278 -0.0278 -0.0278 -0.0278 -0.0278 1.0000 newdocs | -0.1531 0.0326 -0.1740 -0.1914 -0.2170 0.0270 1.0000 citedpubbl | 0.1402 0.0617 -0.1498 -0.1727 -0.1314 -0.2255 0.5676 edupop | 0.0889 0.0666 -0.0239 -0.1722 -0.2059 . 0.2860 publicrd | 0.2166 0.0080 -0.1834 -0.2058 -0.1086 -0.1613 0.5916 venture | . . . . . -0.1129 0.1209 businessrd | 0.0676 0.4475 -0.1358 -0.1671 -0.1285 -0.0980 0.6700 nordbusexp | -0.0550 . -0.1211 0.0226 0.4278 -0.0601 -0.1834 innosmes | . -0.0660 -0.3449 . 0.0095 -0.1118 0.4023 pctapps | 0.0391 0.3285 -0.1016 -0.1372 -0.1154 -0.0988 0.6496 trademarks | 0.0690 -0.0712 -0.0963 -0.1240 -0.1404 -0.0809 0.0653 designs | -0.1337 -0.0806 -0.1031 -0.1173 -0.1631 -0.1251 0.3172 newprodsmes | 0.2048 -0.0849 0.2063 0.0203 -0.0024 -0.2914 0.3060 newmarksmes | 0.0868 0.1800 -0.0164 -0.0766 0.0997 -0.2878 0.3435 innosales | -0.1254 -0.0002 -0.1159 -0.0865 0.3267 -0.2128 0.1543 | citedp~l edupop publicrd venture busine~d nordbu~p innosmes -------------+--------------------------------------------------------------- citedpubbl | 1.0000 edupop | 0.5480 1.0000 publicrd | 0.6768 0.4121 1.0000 venture | 0.4714 0.4025 0.2397 1.0000 businessrd | 0.6688 0.3670 0.7089 0.2528 1.0000 nordbusexp | -0.2355 -0.2011 -0.1506 -0.3138 -0.1642 1.0000 innosmes | 0.6663 0.2552 0.5391 0.2747 0.4693 0.1264 1.0000 pctapps | 0.7072 0.3495 0.7418 0.2943 0.9086 -0.1670 0.5003 trademarks | 0.3248 0.4248 0.0907 0.3081 0.1209 -0.1308 0.2329 designs | 0.4506 0.1728 0.3118 0.2472 0.3621 -0.2186 0.3142 newprodsmes | 0.6240 0.2506 0.4711 0.2896 0.4172 0.0676 0.7858 newmarksmes | 0.6178 0.1713 0.3606 0.2701 0.4947 0.1592 0.7493 innosales | 0.0855 -0.2519 0.0241 -0.1382 0.1074 0.3120 0.2043 | pctapps tradem~s designs newpro~s newmar~s innosa~s -------------+------------------------------------------------------ pctapps | 1.0000 trademarks | 0.0913 1.0000 designs | 0.3681 0.6228 1.0000 newprodsmes | 0.4313 0.2034 0.2837 1.0000 newmarksmes | 0.4474 0.2385 0.2970 0.7794 1.0000 innosales | 0.0507 -0.1319 -0.0694 0.1733 0.3042 1.0000
And then if we drop the variables that have all missing values for the given countries, Stata does not drop the dummies anymore:
Code:
* . xi: regress infdi1 i.country_n newdocs citedpubbl publicrd businessrd pctapps trademarks designs SMEsmax innosales i.country_n _Icountry_n_2-38 (naturally coded; _Icountry_n_2 omitted) Source | SS df MS Number of obs = 422 -------------+---------------------------------- F(45, 376) = 10.85 Model | 376799.153 45 8373.31452 Prob > F = 0.0000 Residual | 290217.467 376 771.854965 R-squared = 0.5649 -------------+---------------------------------- Adj R-squared = 0.5128 Total | 667016.62 421 1584.36252 Root MSE = 27.782 -------------------------------------------------------------------------------- infdi1 | Coefficient Std. err. t P>|t| [95% conf. interval] ---------------+---------------------------------------------------------------- _Icountry_n_3 | -28.2702 13.38353 -2.11 0.035 -54.58615 -1.954256 _Icountry_n_4 | 24.24601 31.04683 0.78 0.435 -36.80117 85.29319 _Icountry_n_5 | 16.97781 28.33762 0.60 0.549 -38.74227 72.69789 _Icountry_n_6 | 137.1536 27.71099 4.95 0.000 82.66567 191.6415 _Icountry_n_7 | 5.228704 23.78324 0.22 0.826 -41.53612 51.99353 _Icountry_n_8 | -42.37346 15.37538 -2.76 0.006 -72.60597 -12.14095 _Icountry_n_9 | 12.61542 21.0514 0.60 0.549 -28.77781 54.00865 _Icountry_n_10 | -26.85992 20.6996 -1.30 0.195 -67.5614 13.84156 _Icountry_n_11 | -21.32491 13.17534 -1.62 0.106 -47.23148 4.581669 _Icountry_n_12 | -12.45769 13.80738 -0.90 0.368 -39.60706 14.69167 _Icountry_n_13 | -25.95055 24.42883 -1.06 0.289 -73.98479 22.08369 _Icountry_n_14 | -3.152964 24.76806 -0.13 0.899 -51.85423 45.5483 _Icountry_n_15 | 13.24128 17.85137 0.74 0.459 -21.85976 48.34231 _Icountry_n_16 | -10.78169 17.10134 -0.63 0.529 -44.40793 22.84456 _Icountry_n_17 | -7.212702 28.1325 -0.26 0.798 -62.52945 48.10405 _Icountry_n_18 | -22.79081 18.63951 -1.22 0.222 -59.44155 13.85993 _Icountry_n_19 | 26.55662 30.40193 0.87 0.383 -33.22248 86.33573 _Icountry_n_20 | 13.13162 28.92817 0.45 0.650 -43.74964 70.01288 _Icountry_n_21 | 99.24663 21.73214 4.57 0.000 56.51487 141.9784 _Icountry_n_22 | 157.6805 28.54731 5.52 0.000 101.5481 213.8129 _Icountry_n_23 | 50.34346 32.37068 1.56 0.121 -13.30679 113.9937 _Icountry_n_24 | -30.22928 18.08496 -1.67 0.095 -65.78961 5.331054 _Icountry_n_25 | 23.79676 32.78206 0.73 0.468 -40.66239 88.25591 _Icountry_n_26 | -42.6865 17.13695 -2.49 0.013 -76.38277 -8.99024 _Icountry_n_27 | 8.445098 29.7548 0.28 0.777 -50.06157 66.95176 _Icountry_n_28 | -11.27378 21.68761 -0.52 0.603 -53.91799 31.37042 _Icountry_n_29 | -5.421011 30.97143 -0.18 0.861 -66.31992 55.4779 _Icountry_n_30 | 12.71005 30.43586 0.42 0.676 -47.13578 72.55587 _Icountry_n_31 | -20.50129 30.08854 -0.68 0.496 -79.66417 38.66159 _Icountry_n_32 | 6.574371 17.41182 0.38 0.706 -27.66237 40.81111 _Icountry_n_33 | -39.01039 21.29306 -1.83 0.068 -80.87879 2.858012 _Icountry_n_34 | -25.11505 21.70173 -1.16 0.248 -67.78702 17.55692 _Icountry_n_35 | -14.98214 19.05556 -0.79 0.432 -52.45097 22.48669 _Icountry_n_36 | -14.36639 27.73303 -0.52 0.605 -68.89767 40.16488 _Icountry_n_37 | 26.49698 32.62507 0.81 0.417 -37.65348 90.64744 _Icountry_n_38 | -58.04496 16.42962 -3.53 0.000 -90.35042 -25.7395 newdocs | 3.57746 4.202534 0.85 0.395 -4.685955 11.84087 citedpubbl | 8.428897 2.052776 4.11 0.000 4.392537 12.46526 publicrd | .152932 19.57373 0.01 0.994 -38.33475 38.64062 businessrd | -7.091957 9.91889 -0.71 0.475 -26.5954 12.41149 pctapps | .1559082 3.595107 0.04 0.965 -6.913126 7.224942 trademarks | -2.883817 .4868718 -5.92 0.000 -3.84115 -1.926484 designs | -1.008264 1.007529 -1.00 0.318 -2.98936 .9728332 SMEsmax | -1.165689 .280415 -4.16 0.000 -1.717067 -.6143111 innosales | 2.516477 .4543427 5.54 0.000 1.623106 3.409848 _cons | -21.5053 38.12557 -0.56 0.573 -96.47135 53.46075 --------------------------------------------------------------------------------
I'm thus quite puzzled and have two questions:
- Shouldn't Stata treat missing values with listwise deletion by default? This would prevent the dummies of the countries presenting missing values along one whole variable to enter the model in the first place. Also, I am not understanding why Stata treats them as collinear. I have found this and this previous posts about similar issues, and I understand this might be due to the dummies being collinear to the coefficients of the fixed effects, i.e. the other dummies in the model, but I'm not really sure if that is the case.
- I'm not planning to use LSDV as my final model. Instead, since my variable are heteroskedastic, autocorrelated and cross-sectionally dependent, I'm planning to use Driscoll-Kraay standard errors with the community command -xtscc-. Is by any chance the issue presented in this post affecting the consistency of other models?
Francesco Defendi
0 Response to Omitted dummy variables due to collinearity, but missing values should prevent them entering the model
Post a Comment