I am using Stata SE 17 on Windows 10. I'm conducting a panel data analysis with the goal of investigating the impact of innovation in attracting foreign direct investments (FDI). My dataset consists of 37 EU countries, measured on 14 variables across 14 years. Here is a sample of my dataset:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input str18 COUNTRY int YEAR double(newdocs citedpubbl edupop publicrd venture businessrd nordbusexp pctapps trademarks designs SMEsmax innosales infdi1) long country_n "Austria" 2004 2.2 10.879386829323456 34 .72 .0485 1.53 . 4.804806595897 5.750369762148659 5.96433700911233 53.26164874551972 10.599653308926985 25.66539714709834 2 "Austria" 2005 2 10.90807814642101 20.5 .74 .052000000000000005 1.71 . 5.082864356344017 5.44394195271982 6.113029790484267 54.073638071027744 12.12044275080061 3.1251494779180087 2 "Austria" 2006 2 11.14425359820278 21.2 .72 .044000000000000004 1.73 . 5.365545654591564 7.5000552377227 7.070428505610924 54.88562739653577 13.641232192674234 17.717340682610388 2 "Austria" 2007 1.9 11.766702785799323 21.1 .74 .028000000000000004 1.78 . 5.0537632261303145 7.7373498636957745 9.22138609767386 48.83508332512358 12.442621838711055 1.464380045626025 2 "Austria" 2008 2 11.25539528832986 22.2 .78 .0215 1.88 .46944562318694916 4.99638723207233 7.753349369779991 7.113023003917563 42.78453925371138 11.244011484747876 3.5734768412160807 2 "Austria" 2009 2.15 10.744087790860396 23.5 .81 .0285 1.94 .46944562318694916 4.939011238014344 9.559393223111512 9.190448731846583 42.77785207971112 11.244011484747876 -5.615650034432947 2 "Austria" 2010 2.3 11.092568305056 30.95 .84 .03956166277617255 1.87 .3533407195307009 5.252049058377892 11.693662770783515 8.594888189423665 42.326375213338586 11.916767341477245 5.331213212198524 2 "Austria" 2011 2.2 11.0989727110624 38.4 .8200000000000001 .05062332555234509 1.84 .3533407195307009 5.129995316751745 13.827932318455517 7.999327647000747 42.326375213338586 11.916767341477245 1.2746210241656093 2 "Austria" 2012 2.2 11.0627916896433 38.4 .85 .044624883377768744 2.05 .4575665576828351 4.757594759441145 13.3241487743434 8.298052792230653 44.708133971291865 9.846163545405481 .10489199786555246 2 "Austria" 2013 2.008113571981588 11.082658226067501 38.4 .85 .04394477403736861 2.09 .4575665576828351 4.964945807646287 13.406225799062174 8.000981365169235 44.708133971291865 9.846163545405481 .38737336166369846 2 end label values country_n country_n label def country_n 2 "Austria", modify
Code:
*
. xi: regress infdi1 i.country_n newdocs citedpubbl edupop publicrd venture businessrd nordbusexp pctapps trademarks designs
> SMEsmax innosales
i.country_n _Icountry_n_2-38 (naturally coded; _Icountry_n_2 omitted)
note: _Icountry_n_15 omitted because of collinearity.
note: _Icountry_n_17 omitted because of collinearity.
note: _Icountry_n_23 omitted because of collinearity.
note: _Icountry_n_25 omitted because of collinearity.
note: _Icountry_n_36 omitted because of collinearity.
note: _Icountry_n_37 omitted because of collinearity.
Source | SS df MS Number of obs = 309
-------------+---------------------------------- F(42, 266) = 13.80
Model | 146034.029 42 3477.00069 Prob > F = 0.0000
Residual | 67043.2023 266 252.042114 R-squared = 0.6854
-------------+---------------------------------- Adj R-squared = 0.6357
Total | 213077.231 308 691.809193 Root MSE = 15.876
--------------------------------------------------------------------------------
infdi1 | Coefficient Std. err. t P>|t| [95% conf. interval]
---------------+----------------------------------------------------------------
_Icountry_n_3 | -39.68065 10.59999 -3.74 0.000 -60.5512 -18.8101
_Icountry_n_4 | 28.69714 24.12934 1.19 0.235 -18.81165 76.20593
_Icountry_n_5 | -9.110369 22.86466 -0.40 0.691 -54.1291 35.90836
_Icountry_n_6 | 216.9712 22.30024 9.73 0.000 173.0638 260.8787
_Icountry_n_7 | -4.527713 18.12123 -0.25 0.803 -40.20701 31.15158
_Icountry_n_8 | -50.57355 11.24234 -4.50 0.000 -72.70884 -28.43825
_Icountry_n_9 | 6.945694 16.86783 0.41 0.681 -26.26575 40.15714
_Icountry_n_10 | -32.77956 14.4839 -2.26 0.024 -61.29724 -4.26188
_Icountry_n_11 | -35.29605 11.20799 -3.15 0.002 -57.36371 -13.22839
_Icountry_n_12 | -30.76903 10.30141 -2.99 0.003 -51.0517 -10.48636
_Icountry_n_13 | -52.51921 19.5321 -2.69 0.008 -90.97638 -14.06203
_Icountry_n_14 | 3.337269 18.891 0.18 0.860 -33.85764 40.53218
_Icountry_n_15 | 0 (omitted)
_Icountry_n_16 | -31.11075 14.9042 -2.09 0.038 -60.45597 -1.765537
_Icountry_n_17 | 0 (omitted)
_Icountry_n_18 | -25.14016 13.35924 -1.88 0.061 -51.44347 1.163155
_Icountry_n_19 | 4.665286 23.9956 0.19 0.846 -42.58018 51.91076
_Icountry_n_20 | -36.70157 25.56419 -1.44 0.152 -87.03547 13.63233
_Icountry_n_21 | 134.045 20.08224 6.67 0.000 94.50467 173.5854
_Icountry_n_22 | 201.7102 26.09115 7.73 0.000 150.3388 253.0817
_Icountry_n_23 | 0 (omitted)
_Icountry_n_24 | -35.33513 13.78443 -2.56 0.011 -62.47559 -8.194669
_Icountry_n_25 | 0 (omitted)
_Icountry_n_26 | -77.66236 15.07972 -5.15 0.000 -107.3531 -47.97157
_Icountry_n_27 | -17.43932 23.78558 -0.73 0.464 -64.27127 29.39263
_Icountry_n_28 | -32.29503 16.40757 -1.97 0.050 -64.60025 .010194
_Icountry_n_29 | -1.508972 23.43871 -0.06 0.949 -47.65798 44.64004
_Icountry_n_30 | -13.44188 24.38399 -0.55 0.582 -61.45206 34.5683
_Icountry_n_31 | -14.65724 23.39618 -0.63 0.532 -60.72251 31.40802
_Icountry_n_32 | 11.82224 13.69928 0.86 0.389 -15.15057 38.79505
_Icountry_n_33 | -23.05757 16.79391 -1.37 0.171 -56.12347 10.00832
_Icountry_n_34 | -43.37165 16.82267 -2.58 0.010 -76.49418 -10.24912
_Icountry_n_35 | -16.72277 15.32675 -1.09 0.276 -46.89995 13.45442
_Icountry_n_36 | 0 (omitted)
_Icountry_n_37 | 0 (omitted)
_Icountry_n_38 | -58.98577 14.03119 -4.20 0.000 -86.61209 -31.35944
newdocs | 6.546929 2.884637 2.27 0.024 .8673014 12.22656
citedpubbl | 5.621024 1.619945 3.47 0.001 2.431478 8.810571
edupop | 1.00983 .2822136 3.58 0.000 .4541734 1.565487
publicrd | 23.46202 13.69844 1.71 0.088 -3.509142 50.43318
venture | -39.16915 28.68726 -1.37 0.173 -95.65213 17.31383
businessrd | -20.99256 7.292466 -2.88 0.004 -35.35086 -6.634264
nordbusexp | 12.61612 4.261034 2.96 0.003 4.226477 21.00577
pctapps | 1.376031 2.827341 0.49 0.627 -4.190784 6.942846
trademarks | -5.781484 .5329737 -10.85 0.000 -6.830868 -4.732101
designs | 1.289679 .8997131 1.43 0.153 -.4817863 3.061144
SMEsmax | .1067005 .2173757 0.49 0.624 -.3212953 .5346963
innosales | .0906274 .3701102 0.24 0.807 -.6380908 .8193456
_cons | -45.79126 28.25667 -1.62 0.106 -101.4264 9.843927
--------------------------------------------------------------------------------
. pwcorr _Icountry_n_15 _Icountry_n_17 _Icountry_n_23 _Icountry_n_25 _Icountry_n_36 _Icountry_n_37 newdocs citedpubbl edupop p
> ublicrd venture businessrd nordbusexp innosmes pctapps trademarks designs newprodsmes newmarksmes innosales
| _Icou~15 _Icou~17 _Icou~23 _Icou~25 _Icou~36 _Icou~37 newdocs
-------------+---------------------------------------------------------------
_Icountry~15 | 1.0000
_Icountry~17 | -0.0278 1.0000
_Icountry~23 | -0.0278 -0.0278 1.0000
_Icountry~25 | -0.0278 -0.0278 -0.0278 1.0000
_Icountry~36 | -0.0278 -0.0278 -0.0278 -0.0278 1.0000
_Icountry~37 | -0.0278 -0.0278 -0.0278 -0.0278 -0.0278 1.0000
newdocs | -0.1531 0.0326 -0.1740 -0.1914 -0.2170 0.0270 1.0000
citedpubbl | 0.1402 0.0617 -0.1498 -0.1727 -0.1314 -0.2255 0.5676
edupop | 0.0889 0.0666 -0.0239 -0.1722 -0.2059 . 0.2860
publicrd | 0.2166 0.0080 -0.1834 -0.2058 -0.1086 -0.1613 0.5916
venture | . . . . . -0.1129 0.1209
businessrd | 0.0676 0.4475 -0.1358 -0.1671 -0.1285 -0.0980 0.6700
nordbusexp | -0.0550 . -0.1211 0.0226 0.4278 -0.0601 -0.1834
innosmes | . -0.0660 -0.3449 . 0.0095 -0.1118 0.4023
pctapps | 0.0391 0.3285 -0.1016 -0.1372 -0.1154 -0.0988 0.6496
trademarks | 0.0690 -0.0712 -0.0963 -0.1240 -0.1404 -0.0809 0.0653
designs | -0.1337 -0.0806 -0.1031 -0.1173 -0.1631 -0.1251 0.3172
newprodsmes | 0.2048 -0.0849 0.2063 0.0203 -0.0024 -0.2914 0.3060
newmarksmes | 0.0868 0.1800 -0.0164 -0.0766 0.0997 -0.2878 0.3435
innosales | -0.1254 -0.0002 -0.1159 -0.0865 0.3267 -0.2128 0.1543
| citedp~l edupop publicrd venture busine~d nordbu~p innosmes
-------------+---------------------------------------------------------------
citedpubbl | 1.0000
edupop | 0.5480 1.0000
publicrd | 0.6768 0.4121 1.0000
venture | 0.4714 0.4025 0.2397 1.0000
businessrd | 0.6688 0.3670 0.7089 0.2528 1.0000
nordbusexp | -0.2355 -0.2011 -0.1506 -0.3138 -0.1642 1.0000
innosmes | 0.6663 0.2552 0.5391 0.2747 0.4693 0.1264 1.0000
pctapps | 0.7072 0.3495 0.7418 0.2943 0.9086 -0.1670 0.5003
trademarks | 0.3248 0.4248 0.0907 0.3081 0.1209 -0.1308 0.2329
designs | 0.4506 0.1728 0.3118 0.2472 0.3621 -0.2186 0.3142
newprodsmes | 0.6240 0.2506 0.4711 0.2896 0.4172 0.0676 0.7858
newmarksmes | 0.6178 0.1713 0.3606 0.2701 0.4947 0.1592 0.7493
innosales | 0.0855 -0.2519 0.0241 -0.1382 0.1074 0.3120 0.2043
| pctapps tradem~s designs newpro~s newmar~s innosa~s
-------------+------------------------------------------------------
pctapps | 1.0000
trademarks | 0.0913 1.0000
designs | 0.3681 0.6228 1.0000
newprodsmes | 0.4313 0.2034 0.2837 1.0000
newmarksmes | 0.4474 0.2385 0.2970 0.7794 1.0000
innosales | 0.0507 -0.1319 -0.0694 0.1733 0.3042 1.0000And then if we drop the variables that have all missing values for the given countries, Stata does not drop the dummies anymore:
Code:
*
. xi: regress infdi1 i.country_n newdocs citedpubbl publicrd businessrd pctapps trademarks designs SMEsmax innosales
i.country_n _Icountry_n_2-38 (naturally coded; _Icountry_n_2 omitted)
Source | SS df MS Number of obs = 422
-------------+---------------------------------- F(45, 376) = 10.85
Model | 376799.153 45 8373.31452 Prob > F = 0.0000
Residual | 290217.467 376 771.854965 R-squared = 0.5649
-------------+---------------------------------- Adj R-squared = 0.5128
Total | 667016.62 421 1584.36252 Root MSE = 27.782
--------------------------------------------------------------------------------
infdi1 | Coefficient Std. err. t P>|t| [95% conf. interval]
---------------+----------------------------------------------------------------
_Icountry_n_3 | -28.2702 13.38353 -2.11 0.035 -54.58615 -1.954256
_Icountry_n_4 | 24.24601 31.04683 0.78 0.435 -36.80117 85.29319
_Icountry_n_5 | 16.97781 28.33762 0.60 0.549 -38.74227 72.69789
_Icountry_n_6 | 137.1536 27.71099 4.95 0.000 82.66567 191.6415
_Icountry_n_7 | 5.228704 23.78324 0.22 0.826 -41.53612 51.99353
_Icountry_n_8 | -42.37346 15.37538 -2.76 0.006 -72.60597 -12.14095
_Icountry_n_9 | 12.61542 21.0514 0.60 0.549 -28.77781 54.00865
_Icountry_n_10 | -26.85992 20.6996 -1.30 0.195 -67.5614 13.84156
_Icountry_n_11 | -21.32491 13.17534 -1.62 0.106 -47.23148 4.581669
_Icountry_n_12 | -12.45769 13.80738 -0.90 0.368 -39.60706 14.69167
_Icountry_n_13 | -25.95055 24.42883 -1.06 0.289 -73.98479 22.08369
_Icountry_n_14 | -3.152964 24.76806 -0.13 0.899 -51.85423 45.5483
_Icountry_n_15 | 13.24128 17.85137 0.74 0.459 -21.85976 48.34231
_Icountry_n_16 | -10.78169 17.10134 -0.63 0.529 -44.40793 22.84456
_Icountry_n_17 | -7.212702 28.1325 -0.26 0.798 -62.52945 48.10405
_Icountry_n_18 | -22.79081 18.63951 -1.22 0.222 -59.44155 13.85993
_Icountry_n_19 | 26.55662 30.40193 0.87 0.383 -33.22248 86.33573
_Icountry_n_20 | 13.13162 28.92817 0.45 0.650 -43.74964 70.01288
_Icountry_n_21 | 99.24663 21.73214 4.57 0.000 56.51487 141.9784
_Icountry_n_22 | 157.6805 28.54731 5.52 0.000 101.5481 213.8129
_Icountry_n_23 | 50.34346 32.37068 1.56 0.121 -13.30679 113.9937
_Icountry_n_24 | -30.22928 18.08496 -1.67 0.095 -65.78961 5.331054
_Icountry_n_25 | 23.79676 32.78206 0.73 0.468 -40.66239 88.25591
_Icountry_n_26 | -42.6865 17.13695 -2.49 0.013 -76.38277 -8.99024
_Icountry_n_27 | 8.445098 29.7548 0.28 0.777 -50.06157 66.95176
_Icountry_n_28 | -11.27378 21.68761 -0.52 0.603 -53.91799 31.37042
_Icountry_n_29 | -5.421011 30.97143 -0.18 0.861 -66.31992 55.4779
_Icountry_n_30 | 12.71005 30.43586 0.42 0.676 -47.13578 72.55587
_Icountry_n_31 | -20.50129 30.08854 -0.68 0.496 -79.66417 38.66159
_Icountry_n_32 | 6.574371 17.41182 0.38 0.706 -27.66237 40.81111
_Icountry_n_33 | -39.01039 21.29306 -1.83 0.068 -80.87879 2.858012
_Icountry_n_34 | -25.11505 21.70173 -1.16 0.248 -67.78702 17.55692
_Icountry_n_35 | -14.98214 19.05556 -0.79 0.432 -52.45097 22.48669
_Icountry_n_36 | -14.36639 27.73303 -0.52 0.605 -68.89767 40.16488
_Icountry_n_37 | 26.49698 32.62507 0.81 0.417 -37.65348 90.64744
_Icountry_n_38 | -58.04496 16.42962 -3.53 0.000 -90.35042 -25.7395
newdocs | 3.57746 4.202534 0.85 0.395 -4.685955 11.84087
citedpubbl | 8.428897 2.052776 4.11 0.000 4.392537 12.46526
publicrd | .152932 19.57373 0.01 0.994 -38.33475 38.64062
businessrd | -7.091957 9.91889 -0.71 0.475 -26.5954 12.41149
pctapps | .1559082 3.595107 0.04 0.965 -6.913126 7.224942
trademarks | -2.883817 .4868718 -5.92 0.000 -3.84115 -1.926484
designs | -1.008264 1.007529 -1.00 0.318 -2.98936 .9728332
SMEsmax | -1.165689 .280415 -4.16 0.000 -1.717067 -.6143111
innosales | 2.516477 .4543427 5.54 0.000 1.623106 3.409848
_cons | -21.5053 38.12557 -0.56 0.573 -96.47135 53.46075
--------------------------------------------------------------------------------I'm thus quite puzzled and have two questions:
- Shouldn't Stata treat missing values with listwise deletion by default? This would prevent the dummies of the countries presenting missing values along one whole variable to enter the model in the first place. Also, I am not understanding why Stata treats them as collinear. I have found this and this previous posts about similar issues, and I understand this might be due to the dummies being collinear to the coefficients of the fixed effects, i.e. the other dummies in the model, but I'm not really sure if that is the case.
- I'm not planning to use LSDV as my final model. Instead, since my variable are heteroskedastic, autocorrelated and cross-sectionally dependent, I'm planning to use Driscoll-Kraay standard errors with the community command -xtscc-. Is by any chance the issue presented in this post affecting the consistency of other models?
Francesco Defendi
0 Response to Omitted dummy variables due to collinearity, but missing values should prevent them entering the model
Post a Comment