I want to do regression across three sub-samples. However the result of regressing them separately vs. using interaction term is different. Could you please help? What did I do wrong? Thank you for your help.
Result by using separate regression for each sub-samples, if sector=1:
Code:
xtprobit over2 l.over2 c.l.lnGSCITOTSD##c.l.GSCITOTMG l.wgdp l.hgdp l.infl l.geopol if sector==1, re vce(robust) Random-effects probit regression Number of obs = 3,103 Group variable: firm Number of groups = 107 Random effects u_i ~ Gaussian Obs per group: min = 29 avg = 29.0 max = 29 Integration method: mvaghermite Integration pts. = 12 Wald chi2(8) = 392.93 Log pseudolikelihood = -1087.6732 Prob > chi2 = 0.0000 (Std. Err. adjusted for 107 clusters in firm) --------------------------------------------------------------------------------------------- | Robust over2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------------------+---------------------------------------------------------------- over2 | L1. | 1.268935 .1114277 11.39 0.000 1.050541 1.487329 | lnGSCITOTSD | L1. | -.2170595 .0465004 -4.67 0.000 -.3081985 -.1259205 | GSCITOTMG | L1. | .0275061 .0199155 1.38 0.167 -.0115275 .0665398 | cL.lnGSCITOTSD#cL.GSCITOTMG | -.0032262 .0033667 -0.96 0.338 -.0098247 .0033724 | wgdp | L1. | -.0863806 .0282783 -3.05 0.002 -.1418052 -.0309561 | hgdp | L1. | .2159382 .0230128 9.38 0.000 .170834 .2610424 | infl | L1. | .0931856 .0088384 10.54 0.000 .0758627 .1105085 | geopol | L1. | .0061763 .0016261 3.80 0.000 .0029892 .0093633 | _cons | -.8966739 .3538679 -2.53 0.011 -1.590242 -.2031056 ----------------------------+---------------------------------------------------------------- /lnsig2u | -.8778675 .2561907 -1.379992 -.375743 ----------------------------+---------------------------------------------------------------- sigma_u | .6447235 .0825861 .5015781 .8287212 rho | .2936199 .0531358 .2010103 .407154 ---------------------------------------------------------------------------------------------
Result by using interaction term:
Code:
xtprobit over2 i.sector#(c.l.over2 c.l.lnGSCITOTSD##c.l.GSCITOTMG c.l.wgdp c.l.hgdp c.l.infl c.l.geopol), re vce(robust) Random-effects probit regression Number of obs = 14,732 Group variable: firm Number of groups = 508 Random effects u_i ~ Gaussian Obs per group: min = 29 avg = 29.0 max = 29 Integration method: mvaghermite Integration pts. = 12 Wald chi2(24) = 1278.97 Log pseudolikelihood = -4527.8125 Prob > chi2 = 0.0000 (Std. Err. adjusted for 508 clusters in firm) ---------------------------------------------------------------------------------------------------- | Robust over2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------------------------+---------------------------------------------------------------- sector#cL.over2 | 1 | 1.233693 .0995269 12.40 0.000 1.038624 1.428762 2 | 1.116174 .0856663 13.03 0.000 .9482715 1.284077 3 | 1.587107 .0876541 18.11 0.000 1.415308 1.758906 | sector#cL.lnGSCITOTSD | 1 | -.199594 .043342 -4.61 0.000 -.2845426 -.1146453 2 | -.1114354 .0398321 -2.80 0.005 -.1895049 -.0333658 3 | -.2216074 .043049 -5.15 0.000 -.3059818 -.137233 | sector#cL.GSCITOTMG | 1 | .0319543 .0200931 1.59 0.112 -.0074275 .0713361 2 | .0587539 .0139361 4.22 0.000 .0314396 .0860682 3 | .03742 .0156501 2.39 0.017 .0067464 .0680936 | sector#cL.lnGSCITOTSD#cL.GSCITOTMG | 1 | -.0040029 .003388 -1.18 0.237 -.0106433 .0026376 2 | -.0094008 .0023272 -4.04 0.000 -.013962 -.0048396 3 | -.0052052 .0026101 -1.99 0.046 -.010321 -.0000894 | sector#cL.wgdp | 1 | -.0853107 .0278813 -3.06 0.002 -.1399571 -.0306643 2 | -.0565951 .0211258 -2.68 0.007 -.0980009 -.0151892 3 | -.0896959 .0247988 -3.62 0.000 -.1383006 -.0410912 | sector#cL.hgdp | 1 | .2314884 .0191855 12.07 0.000 .1938855 .2690913 2 | .1925916 .0168027 11.46 0.000 .1596588 .2255243 3 | .2353004 .0173111 13.59 0.000 .2013714 .2692295 | sector#cL.infl | 1 | .0986052 .0077632 12.70 0.000 .0833896 .1138208 2 | .0789797 .006462 12.22 0.000 .0663145 .0916449 3 | .0970083 .0061669 15.73 0.000 .0849215 .1090951 | sector#cL.geopol | 1 | .0064281 .0016887 3.81 0.000 .0031183 .0097378 2 | .0054656 .0011434 4.78 0.000 .0032247 .0077066 3 | .0091764 .001425 6.44 0.000 .0063835 .0119694 | _cons | -1.090354 .1779324 -6.13 0.000 -1.439095 -.741613 -----------------------------------+---------------------------------------------------------------- /lnsig2u | -.5038364 .0954541 -.6909231 -.3167497 -----------------------------------+---------------------------------------------------------------- sigma_u | .7773083 .0370987 .7078936 .8535298 rho | .3766395 .0224109 .3338278 .4214681 ----------------------------------------------------------------------------------------------------
Best regards,
0 Response to Regression across sub-samples vs by using interaction term
Post a Comment