Code:
reg avg_inc_2 inwagedummy youthwagedummy mw_y ymw_y i.*country_n#i.*year i.*age_groups if (age_groups==1|age_groups==2), cluster(country_n) reg m_employmentratio inwagedummy youthwagedummy mw_y ymw_y i.*country_n#i.*year i.*age_groups if (age_groups==1|age_groups==2), cluster(country_n)
Note: Since I am really interested in looking at the avg_income between age_groups, I have repeated this regression with a variable representing the percentage difference from average disposable income of the age group 25-40, whilst the results are not significant, when I use this percentage variable, my issues of collinearity disappear.
Thank you.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input double country_n float(age_groups year) byte(inwagedummy youthwagedummy) float(mw_y ymw_y) double(m_employmentratio avg_inc_2) float(per_to_25_39 stdlfprate_m) 1 1 1 1 1 0 1 61.905171585 18383.638671875 106.8672 -.3402818 1 2 1 1 1 0 0 75.74068471 17202.3203125 100 -.3402818 1 3 1 1 1 0 0 78.66788015 18233.490234375 105.99436 -.3402818 1 4 1 1 1 0 0 54.09412395333334 16983.509765625 98.72802 -.3402818 1 1 2 1 1 0 1 61.392848445 19168.96484375 105.014 -.23995534 1 2 2 1 1 0 0 75.91077349666666 18253.72509765625 100 -.23995534 1 3 2 1 1 0 0 78.38746349 19160.34375 104.96676 -.23995534 1 4 2 1 1 0 0 54.60154921666666 17701.13232421875 96.97271 -.23995534 1 1 3 1 1 0 1 61.208336079999995 19954.291015625 103.36263 -.13962887 1 2 3 1 1 0 0 76.02173251666666 19305.1298828125 100 -.13962887 1 3 3 1 1 0 0 79.07494859 20087.197265625 104.05109 -.13962887 1 4 3 1 1 0 0 55.98275992333333 18418.7548828125 95.40861 -.13962887 1 1 4 1 1 0 1 61.894535415 20739.6171875 101.88187 -.03930241 1 2 4 1 1 0 0 76.63595531666667 20356.53466796875 100 -.03930241 1 3 4 1 1 0 0 79.375593615 21014.05078125 103.23 -.03930241 1 4 4 1 1 0 0 57.40405967 19136.37744140625 94.00607 -.03930241 1 1 5 1 1 0 1 62.136433595 21524.943359375 100.54655 .06102405 1 2 5 1 1 0 0 76.73670893666667 21407.939453125 100 .06102405 1 3 5 1 1 0 0 79.519111255 21940.904296875 102.48956 .06102405 1 4 5 1 1 0 0 58.573308759999996 19854 92.74129 .06102405 1 1 6 1 1 0 1 63.170592385000006 23661.93359375 100.66637 .2611571 1 2 6 1 1 0 0 77.87832071000001 23505.30078125 100 .2611571 1 3 6 1 1 0 0 80.937467405 24024.89697265625 102.21055 .2611571 1 4 6 1 1 0 0 60.31463328666666 22291.32275390625 94.8353 .2611571 1 1 7 1 1 0 1 63.493052445000004 25798.923828125 100.76657 .4612901 1 2 7 1 1 0 0 78.43671636666667 25602.662109375 100 .4612901 1 3 7 1 1 0 0 81.06239939 26108.8896484375 101.97725 .4612901 1 4 7 1 1 0 0 61.89366863 24728.6455078125 96.58623 .4612901 1 1 8 1 1 0 1 63.896869845 27935.9140625 100.8516 .6614231 1 2 8 1 1 0 0 79.28298021666667 27700.0234375 100 .6614231 1 3 8 1 1 0 0 81.826284695 28192.88232421875 101.77927 .6614231 1 4 8 1 1 0 0 63.00212025666667 27165.96826171875 98.07201 .6614231 1 1 9 1 1 0 1 64.198685575 30072.904296875 100.92464 .8615562 1 2 9 1 1 0 0 79.70918984 29797.384765625 100 .8615562 1 3 9 1 1 0 0 82.06593212499999 30276.875 101.60917 .8615562 1 4 9 1 1 0 0 63.93898066666666 29603.291015625 99.34863 .8615562 1 1 10 1 1 0 1 60.697728655 34159.3154296875 101.50795 1.2293557 1 2 10 1 1 0 0 78.14557024 33651.8623046875 100 1.2293557 1 3 10 1 1 0 0 81.02484167 34092.95703125 101.31076 1.2293557 1 4 10 1 1 0 0 65.10186506000001 33093.6494140625 98.34121 1.2293557 1 1 11 1 1 0 1 59.934069255 38245.7265625 101.97137 1.597155 1 2 11 1 1 0 0 78.33510748666667 37506.33984375 100 1.597155 1 3 11 1 1 0 0 81.161630255 37909.0390625 101.07368 1.597155 1 4 11 1 1 0 0 66.59804761 36584.0078125 97.54086 1.597155 1 1 12 1 1 0 1 59.755601799999994 42428.107421875 99.74764 2.0770395 1 2 12 1 1 0 0 79.18128143333333 42535.44921875 100 2.0770395 1 3 12 1 1 0 0 81.01241693 42178.56640625 99.16097 2.0770395 1 4 12 1 1 0 0 66.88963640666667 41460.669921875 97.47321 2.0770395 1 1 13 1 1 0 1 58.92321488 46610.48828125 97.99416 2.556924 1 2 13 1 1 0 0 78.83483037 47564.55859375 100 2.556924 end label values country_n country1 label def country1 1 "Australia", modify label values age_groups age_groups_lbl label def age_groups_lbl 1 "15-24", modify label def age_groups_lbl 2 "26-39", modify label def age_groups_lbl 3 "40-49", modify label def age_groups_lbl 4 "50-65", modify label values year year_n label def year_n 1 "2000", modify label def year_n 2 "2001", modify label def year_n 3 "2002", modify label def year_n 4 "2003", modify label def year_n 5 "2004", modify label def year_n 6 "2005", modify label def year_n 7 "2006", modify label def year_n 8 "2007", modify label def year_n 9 "2008", modify label def year_n 10 "2009", modify label def year_n 11 "2010", modify label def year_n 12 "2011", modify label def year_n 13 "2012", modify
0 Response to Near perfect correlation between dummy variable and outcome variable, all checks on data indicate there is no problem with underlying data.
Post a Comment