For the following model under the IV framework:
Code:
ivreg2 cognition (infl_pneumonia_rate1000=inter) female agesurvey black postsulfa `postAtheen' i.birth_year i.birth_state, cluster(birth_state) partial(i.birth_year i.birth_state)
I used two methods to address this problem. The first method is by including DNAMGRIMAGE_accl as an interaction term with infl_pneumonia_rate in the IV model. I followed some previous discussions about IV interactions in the forum and write the following code:
Code:
ivreg2 cognition (infl_pneumonia_rate1000 c.infl_pneumonia_rate1000#i.DNAMGRIMAGE_accl=inter c.inter#i.DNAMGRIMAGE_accl) female agesurvey i.DNAMGRIMAGE_accl black postsulfa `postAtheen' i.birth_year i.birth_state, cluster(birth_state) partial(i.birth_year i.birth_state)
Code:
IV (2SLS) estimation -------------------- Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and clustering on birth_state Number of clusters (birth_state) = 48 Number of obs = 13385 F( 21, 47) = 163.82 Prob > F = 0.0000 Total (centered) SS = 242728.7548 Centered R2 = 0.1287 Total (uncentered) SS = 242728.7548 Uncentered R2 = 0.1287 Residual SS = 211487.5393 Root MSE = 3.975 ------------------------------------------------------------------------------------------------------------ | Robust cognition | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------------------------------+---------------------------------------------------------------- infl_pneumonia_rate1000 | -2.700423 1.641164 -1.65 0.100 -5.917046 .5161992 | DNAMGRIMAGE_accl#c.infl_pneumonia_rate1000 | 1 | 1.388179 .8338651 1.66 0.096 -.2461667 3.022525 | female | .76827 .1373375 5.59 0.000 .4990933 1.037447 agesurvey | -.1910098 .0051996 -36.74 0.000 -.2012008 -.1808187 1.DNAMGRIMAGE_accl | -1.780273 .7225659 -2.46 0.014 -3.196476 -.3640699 black | -2.721402 .2830009 -9.62 0.000 -3.276073 -2.16673 postsulfa | 7.26792 9.512314 0.76 0.445 -11.37587 25.91171 post_complete | -8.505998 7.04445 -1.21 0.227 -22.31287 5.300871 post_b_mmr_1930_36 | -.3231463 .3937424 -0.82 0.412 -1.094867 .4485745 post_b_diar_1930_36 | -.0887637 .0945664 -0.94 0.348 -.2741104 .096583 post_b_malaria_1930_36 | -.0032673 .0021566 -1.51 0.130 -.0074942 .0009596 post_b_tbr_1930_36 | -.2205102 3.32944 -0.07 0.947 -6.746093 6.305072 post_base_scarfever_rate | -46857.07 36927.85 -1.27 0.204 -119234.3 25520.18 post_base_meningitis_rate | 14000.31 38008.46 0.37 0.713 -60494.91 88495.53 post_b_physician_cap_193036 | -1.39203 .6091681 -2.29 0.022 -2.585978 -.1980829 post_b_pharm_cap_193036 | 1.719759 1.593879 1.08 0.281 -1.404185 4.843704 post_b_nb_hos_imp_pc_193036 | -13.21998 18.62931 -0.71 0.478 -49.73275 23.2928 post_b_pci_193036 | -.0029973 .0042377 -0.71 0.479 -.011303 .0053084 post_b_urban_st_193036 | .4362025 5.122835 0.09 0.932 -9.60437 10.47678 post_b_illit_st_193036 | .9197056 11.53224 0.08 0.936 -21.68308 23.52249 post_b_nb_sch_imp_pc_193036 | -.0892432 .3536831 -0.25 0.801 -.7824494 .6039629
The second method is just by stratifying the initial IV model by the binary variable DNAMGRIMAGE_accl. I used the following code:
1. When DNAMGRIMAGE_accl = 1
Code:
ivreg2 cognition (infl_pneumonia_rate1000=inter) female agesurvey black postsulfa `postAtheen' i.birth_year i.birth_state if DNAMGRIMAGE_accl == 1, cluster(birth_state) partial(i.birth_year i.birth_state)
Code:
IV (2SLS) estimation -------------------- Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and clustering on birth_state Number of clusters (birth_state) = 48 Number of obs = 5838 F( 19, 47) = 146.57 Prob > F = 0.0000 Total (centered) SS = 101303.6092 Centered R2 = 0.1305 Total (uncentered) SS = 101303.6092 Uncentered R2 = 0.1305 Residual SS = 88081.7182 Root MSE = 3.884 --------------------------------------------------------------------------------------------- | Robust cognition | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------------------+---------------------------------------------------------------- infl_pneumonia_rate1000 | -.4627608 2.066673 -0.22 0.823 -4.513366 3.587844 female | .7953502 .2299685 3.46 0.001 .3446202 1.24608 agesurvey | -.1996929 .0075702 -26.38 0.000 -.2145302 -.1848557 black | -2.322097 .394588 -5.88 0.000 -3.095476 -1.548719 postsulfa | 7.610768 14.96973 0.51 0.611 -21.72936 36.95089 post_complete | -.674218 9.90113 -0.07 0.946 -20.08008 18.73164 post_b_mmr_1930_36 | -.0718856 .58801 -0.12 0.903 -1.224364 1.080593 post_b_diar_1930_36 | -.175774 .1387585 -1.27 0.205 -.4477357 .0961876 post_b_malaria_1930_36 | -.0012827 .0037815 -0.34 0.734 -.0086943 .0061289 post_b_tbr_1930_36 | -4.834991 5.406693 -0.89 0.371 -15.43192 5.761933 post_base_scarfever_rate | 40192.7 42631.75 0.94 0.346 -43364 123749.4 post_base_meningitis_rate | 41752.66 89054.39 0.47 0.639 -132790.7 216296 post_b_physician_cap_193036 | -3.246845 1.390723 -2.33 0.020 -5.972613 -.5210775 post_b_pharm_cap_193036 | 2.52376 2.686741 0.94 0.348 -2.742156 7.789676 post_b_nb_hos_imp_pc_193036 | -17.48562 38.14572 -0.46 0.647 -92.24986 57.27861 post_b_pci_193036 | .0084787 .0077569 1.09 0.274 -.0067246 .0236819 post_b_urban_st_193036 | -11.44327 8.021479 -1.43 0.154 -27.16508 4.27854 post_b_illit_st_193036 | 11.93194 19.74517 0.60 0.546 -26.76788 50.63175 post_b_nb_sch_imp_pc_193036 | -.6371579 .6122712 -1.04 0.298 -1.837187 .5628715 ---------------------------------------------------------------------------------------------
2. When DNAMGRIMAGE_accl = 0
Code:
ivreg2 cognition (infl_pneumonia_rate1000=inter) female agesurvey black postsulfa `postAtheen' i.birth_year i.birth_state if DNAMGRIMAGE_accl == 0, cluster(birth_state) partial(i.birth_year i.birth_state)
Code:
IV (2SLS) estimation -------------------- Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and clustering on birth_state Number of clusters (birth_state) = 48 Number of obs = 7547 F( 19, 47) = 76.47 Prob > F = 0.0000 Total (centered) SS = 131605.8729 Centered R2 = 0.1198 Total (uncentered) SS = 131605.8729 Uncentered R2 = 0.1198 Residual SS = 115841.1524 Root MSE = 3.918 --------------------------------------------------------------------------------------------- | Robust cognition | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------------------+---------------------------------------------------------------- infl_pneumonia_rate1000 | -3.189662 2.171009 -1.47 0.142 -7.444761 1.065437 female | .7863143 .1631763 4.82 0.000 .4664946 1.106134 agesurvey | -.1859477 .0064833 -28.68 0.000 -.1986546 -.1732407 black | -2.846336 .448716 -6.34 0.000 -3.725803 -1.966868 postsulfa | 5.667493 10.68912 0.53 0.596 -15.28279 26.61778 post_complete | -16.86658 9.549301 -1.77 0.077 -35.58286 1.849707 post_b_mmr_1930_36 | -.5785419 .5686961 -1.02 0.309 -1.693166 .536082 post_b_diar_1930_36 | .2194986 .1302678 1.68 0.092 -.0358216 .4748189 post_b_malaria_1930_36 | -.0059695 .0033666 -1.77 0.076 -.0125679 .0006288 post_b_tbr_1930_36 | -3.152445 3.633162 -0.87 0.386 -10.27331 3.968422 post_base_scarfever_rate | -116179.3 47454.37 -2.45 0.014 -209188.2 -23170.43 post_base_meningitis_rate | 40355.72 36380.03 1.11 0.267 -30947.82 111659.3 post_b_physician_cap_193036 | .0375361 1.289499 0.03 0.977 -2.489836 2.564909 post_b_pharm_cap_193036 | 2.416589 2.204938 1.10 0.273 -1.90501 6.738188 post_b_nb_hos_imp_pc_193036 | 17.58173 24.02155 0.73 0.464 -29.49963 64.6631 post_b_pci_193036 | -.0144308 .0065389 -2.21 0.027 -.0272469 -.0016148 post_b_urban_st_193036 | 14.76539 7.294849 2.02 0.043 .467744 29.06303 post_b_illit_st_193036 | 16.74622 17.71698 0.95 0.345 -17.97842 51.47087 post_b_nb_sch_imp_pc_193036 | .2122467 .3956725 0.54 0.592 -.5632571 .9877505 ---------------------------------------------------------------------------------------------
For example, in the subgroup analysis, when DNAMGRIMAGE_accl = 1, the coefficient of infl_pneumonia_rate1000 is -0.46276. But in the IV model, the point estimate for infl_pneumonia_rate1000 when DNAMGRIMAGE_accl = 1 is (-2.700423+1.388179) = -1.312244
And in the subgroup analysis, when DNAMGRIMAGE_accl = 0, the coefficient of infl_pneumonia_rate1000 is -3.189662. But in the IV model, the point estimate for infl_pneumonia_rate1000 when DNAMGRIMAGE_accl = 0 is -2.700423.
Are there any mistakes in my code for either interaction or subgroup IV analysis? If there is no mistake, how should we explain the difference in the point estimate between IV interaction analysis and IV subgroup analysis?
Many thanks!!!
0 Response to Difference between instrumental variable interaction and instrumental variable subgroup analysis
Post a Comment