I have been trying to implement xtdpdsys in my paper. However, based on my data set the Arellano-Bond test is showing second autocorrelation. I tried to add additional lags in order to control for autocorrelation but still it isn't working. As advised before, I am aware that the sample has a very small cross-sectional and a very large time dimension. Perhaps the problem is that I am not treating any of the variables as endogenous. Can you please advise whether this will help? If yes can you please advise how to determine which variables is endogenous?
The table is showing the results with 3 lags on the explanatory variables and 1 lag on the dependent variable (llrgl)
Code:
xtdpdsys llrgl L(0/3).(car lerner high_copm ownership_concentration insitution cir deposit_asset netloantotalassets otherearningassets incomediversity size luqidasset gdp_growth inflation) crisis_d gcc_d d_iraq d_bahrain d_syrianarabrepublic d_palestinianterritories d_oman d_tunisia d_yemen d_saudiarabia d_jordan d_kuwait d_iran d_unitedarabemirates d_qatar d_lebanon d_egypt d_morocco d_libya d_algeria d_israel, lags(1) maxldep(1) level(95.0) artests(3) vce(robust)
Code:
System dynamic panel-data estimation Number of obs = 2222 Group variable: y Number of groups = 14 Time variable: banks1 Obs per group: min = 155 avg = 158.7143 max = 159 Number of instruments = 352 Wald chi2(13) = 515.77 Prob > chi2 = 0.0000 One-step results ------------------------------------------------------------------------------ | Robust llrgl | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- llrgl | L1. | .0407633 .0193516 2.11 0.035 .0028349 .0786917 | car | --. | .0728625 .0182213 4.00 0.000 .0371494 .1085756 L1. | .0630444 .036326 1.74 0.083 -.0081533 .1342421 L2. | -.0337567 .0159734 -2.11 0.035 -.0650639 -.0024494 L3. | .0508269 .0195311 2.60 0.009 .0125466 .0891073 | lerner | --. | .1363728 .090361 1.51 0.131 -.0407315 .3134771 L1. | .0351335 .0148506 2.37 0.018 .0060268 .0642402 L2. | .0017673 .0087028 0.20 0.839 -.0152899 .0188245 L3. | -.0502972 .0125289 -4.01 0.000 -.0748534 -.025741 | high_copm | --. | -.0483173 .0131467 -3.68 0.000 -.0740844 -.0225503 L1. | .0040067 .0064278 0.62 0.533 -.0085915 .0166049 L2. | -.0043492 .0050352 -0.86 0.388 -.0142181 .0055196 L3. | .0062063 .0074331 0.83 0.404 -.0083623 .0207749 | ownership~on | --. | -.0231074 .0061234 -3.77 0.000 -.0351089 -.0111058 L1. | -.0115021 .0040053 -2.87 0.004 -.0193524 -.0036517 L2. | -.0066738 .0047957 -1.39 0.164 -.0160733 .0027257 L3. | -.012933 .0029764 -4.35 0.000 -.0187666 -.0070993 | insitution | --. | -.0030289 .0291527 -0.10 0.917 -.0601671 .0541094 L1. | .0032964 .0044128 0.75 0.455 -.0053525 .0119453 L2. | .0043656 .0023974 1.82 0.069 -.0003331 .0090644 L3. | -.0100826 .0038068 -2.65 0.008 -.0175437 -.0026215 | cir | .0008092 .0003124 2.59 0.010 .0001968 .0014216 deposit_as~t | .017724 .017597 1.01 0.314 -.0167656 .0522135 netloantot~s | .0331774 .0120139 2.76 0.006 .0096307 .0567242 otherearni~s | -.0082478 .0148334 -0.56 0.578 -.0373207 .0208251 incomedive~y | .0085052 .0092001 0.92 0.355 -.0095266 .0265369 size | .0044612 .001072 4.16 0.000 .0023601 .0065623 luqidasset | .0667871 .0285112 2.34 0.019 .0109061 .1226681 gdp_growth | -.4109581 .0946169 -4.34 0.000 -.5964038 -.2255124 inflation | .0026501 .081276 0.03 0.974 -.1566481 .1619482 crisis_d | -.0768883 .0163605 -4.70 0.000 -.1089543 -.0448223 gcc_d | -.0050734 .0604517 -0.08 0.933 -.1235566 .1134098 d_iraq | .0424741 .0491773 0.86 0.388 -.0539116 .1388597 d_bahrain | .0841493 .0366003 2.30 0.021 .0124141 .1558846 d_syrianar~c | .2228825 .0456774 4.88 0.000 .1333565 .3124085 d_palestin~s | -.0174973 .0621769 -0.28 0.778 -.1393619 .1043673 d_oman | -.0048881 .0186836 -0.26 0.794 -.0415073 .0317311 d_tunisia | .030472 .0365098 0.83 0.404 -.041086 .1020299 d_yemen | .3075185 .073833 4.17 0.000 .1628084 .4522286 d_saudiara~a | -.0170867 .0280392 -0.61 0.542 -.0720426 .0378691 d_jordan | .0303965 .0368532 0.82 0.409 -.0418344 .1026274 d_kuwait | .0128424 .0294593 0.44 0.663 -.0448968 .0705817 d_unitedar~s | .0272542 .0159014 1.71 0.087 -.0039119 .0584204 d_lebanon | .0561996 .0302753 1.86 0.063 -.0031388 .115538 d_egypt | .0708349 .033966 2.09 0.037 .0042626 .1374071 d_morocco | .0575885 .0336841 1.71 0.087 -.0084312 .1236081 d_algeria | -.0193776 .0226192 -0.86 0.392 -.0637105 .0249552 d_israel | .0077773 .0635191 0.12 0.903 -.1167179 .1322724 _cons | -.0538288 .053439 -1.01 0.314 -.1585673 .0509096 ------------------------------------------------------------------------------ Instruments for differenced equation GMM-type: L(2/2).llrgl Standard: D.car LD.car L2D.car L3D.car D.lerner LD.lerner L2D.lerner L3D.lerner D.high_copm LD.high_copm L2D.high_copm L3D.high_copm D.ownership_concentration LD.ownership_concentration L2D.ownership_concentration L3D.ownership_concentration D.insitution LD.insitution L2D.insitution L3D.insitution D.cir D.deposit_asset D.netloantotalassets D.otherearningassets D.incomediversity D.size D.luqidasset D.gdp_growth D.inflation D.crisis_d D.gcc_d D.d_iraq D.d_bahrain D.d_syrianarabrepublic D.d_palestinianterritories D.d_oman D.d_tunisia D.d_yemen D.d_jordan D.d_kuwait D.d_unitedarabemirates D.d_qatar D.d_lebanon D.d_egypt D.d_morocco D.d_algeria D.d_israel Instruments for level equation GMM-type: LD.llrgl Standard: _cons . estat abond artests not computed for one-step system estimator with vce(gmm) Arellano-Bond test for zero autocorrelation in first-differenced errors +-----------------------+ |Order | z Prob > z| |------+----------------| | 1 |-3.1457 0.0017 | | 2 | 2.1788 0.0293 | | 3 |-1.5398 0.1236 | +-----------------------+ H0: no autocorrelation
Best Regards,
Petko Bachvarov
0 Response to Help with xtdpdsys command
Post a Comment