I would like to ask for some clarification on regression interpretation.
The dependent variable is the number of child abuse in rate per 1,000 and the independent variables are the amount of subsidy ($/per child) and the percentage of White population (%).
I would like to conduct a regression model.
Code:
. reg ChildAbuse subsidy White
Source | SS df MS Number of obs = 153
-------------+---------------------------------- F(2, 150) = 0.19
Model | 9.78712136 2 4.89356068 Prob > F = 0.8231
Residual | 3765.58673 150 25.1039116 R-squared = 0.0026
-------------+---------------------------------- Adj R-squared = -0.0107
Total | 3775.37386 152 24.8379859 Root MSE = 5.0104
------------------------------------------------------------------------------
ChildAbuse | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
subsidy | .0001577 .0002916 0.54 0.589 -.0004184 .0007338
White | .007741 .0388029 0.20 0.842 -.0689299 .0844119
_cons | 9.235017 .7771175 11.88 0.000 7.699506 10.77053
------------------------------------------------------------------------------then, I get:
Code:
. reg ChildAbuse lnsubsidy White
Source | SS df MS Number of obs = 153
-------------+---------------------------------- F(2, 150) = 0.17
Model | 8.40519016 2 4.20259508 Prob > F = 0.8461
Residual | 3766.96867 150 25.1131244 R-squared = 0.0022
-------------+---------------------------------- Adj R-squared = -0.0111
Total | 3775.37386 152 24.8379859 Root MSE = 5.0113
------------------------------------------------------------------------------
ChildAbuse | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnsubsidy | -.3793123 .7784218 -0.49 0.627 -1.9174 1.158776
White | .0128794 .0381096 0.34 0.736 -.0624217 .0881804
_cons | 12.32975 5.818937 2.12 0.036 .8320792 23.82742
------------------------------------------------------------------------------For the previous variable, would it be: "If I increase a dollar amount of subsidy, it decreases the number of child abuse (per 1,000) by -0.379, holding other variables constant."?
Thank you very much!
0 Response to Regression interpretation
Post a Comment