I am analyzing the effect of LPI on export and import trade ( using panel data) when I ran OLS, the result was below
Code:
. reg lex lgdp dis ll0 landlocked, cluster(country1) note: landlocked omitted because of collinearity Linear regression Number of obs = 156 F(3, 19) = 125.91 Prob > F = 0.0000 R-squared = 0.8903 Root MSE = .57966 (Std. Err. adjusted for 20 clusters in country1) ------------------------------------------------------------------------------ | Robust lex | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lgdp | .8434597 .074269 11.36 0.000 .688013 .9989065 dis | -.7162724 .0859011 -8.34 0.000 -.8960654 -.5364794 ll0 | 1.771018 .588909 3.01 0.007 .5384175 3.003619 landlocked | 0 (omitted) _cons | 3.902149 1.193095 3.27 0.004 1.404974 6.399325 ------------------------------------------------------------------------------
But when I ran RE and Fe the result was very different with OLS' result . All in RE and Fe, the result showed that LPI don't have any effect on export. More over , the result of F-test in fe and the p value Hausman test showed that Fe was best choice
Code:
. xtreg lex lgdp dis ll0 landlocked,fe note: dis omitted because of collinearity note: landlocked omitted because of collinearity Fixed-effects (within) regression Number of obs = 156 Group variable: country1 Number of groups = 20 R-sq: Obs per group: within = 0.2828 min = 4 between = 0.7417 avg = 7.8 overall = 0.6698 max = 8 F(2,134) = 26.41 corr(u_i, Xb) = -0.9032 Prob > F = 0.0000 ------------------------------------------------------------------------------ lex | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lgdp | 2.068337 .2848885 7.26 0.000 1.504877 2.631797 dis | 0 (omitted) ll0 | -.861858 1.238365 -0.70 0.488 -3.311128 1.587412 landlocked | 0 (omitted) _cons | -9.631277 2.850162 -3.38 0.001 -15.2684 -3.994153 -------------+---------------------------------------------------------------- sigma_u | 2.2327644 sigma_e | .4243563 rho | .96513702 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(19, 134) = 27.17 Prob > F = 0.0000
Code:
. . xtreg lex lgdp dis ll0 landlocked,re note: landlocked omitted because of collinearity Random-effects GLS regression Number of obs = 156 Group variable: country1 Number of groups = 20 R-sq: Obs per group: within = 0.2616 min = 4 between = 0.9389 avg = 7.8 overall = 0.8841 max = 8 Wald chi2(3) = 278.22 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ lex | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lgdp | .9661854 .0729139 13.25 0.000 .8232767 1.109094 dis | -.7608128 .1180357 -6.45 0.000 -.9921585 -.529467 ll0 | .7772783 .7426183 1.05 0.295 -.6782268 2.232783 landlocked | 0 (omitted) _cons | 4.390683 1.316084 3.34 0.001 1.811206 6.97016 -------------+---------------------------------------------------------------- sigma_u | .43224225 sigma_e | .4243563 rho | .50920534 (fraction of variance due to u_i) ------------------------------------------------------------------------------
Code:
. hausman fe re ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | fe re Difference S.E. -------------+---------------------------------------------------------------- lgdp | 2.068337 .9661854 1.102151 .2753998 ll0 | -.861858 .7772783 -1.639136 .9909921 ------------------------------------------------------------------------------ b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 19.30 Prob>chi2 = 0.0001
Thanks so much
0 Response to Choosing between OLS , RE, FE
Post a Comment