- One of the dependent variables for one of my statistical tests, 'distvol' is a variable measuring the ideological distance of voter party preference shifts during an election campaign. 'Distvol' can take any integer value from 0 to 7.
- For example, a respondent with a 'distvol' score of 7 indicates that they switched their vote preference from the farthest left party to the farthest right party, while a score of 1 indicates they switched their preference between two ideologically close parties.
- Most respondents, however, did not switch their preference, meaning that they got a 'distvol' value of 0. The distribution of 'distvol' therefore has a lot of zeros in it (see below).
- For some context, my research is looking at the impact of voters' online media consumption on changes in their party preference ("electoral volatility") during an election campaign. I hypothesise that those who consume more online media will switch to ideologically closer parties than those who consume less online media.
- Which type of regression model do you think would work best here? Below are the options I'm considering
- Both poisson and negative binomial regression would work with this distribution, I'm fairly sure, even though the data is not true count data, as the only other similar study I've seen using this data used a negative binomial.
- Generalised linear model with family(bin 10) and link(logit) - This is very similar to negative binomial, and is bounded at the high end (unlike negative binomial).
- Ordinal logit - Some have suggested that the distribution would better suit an ologit, since it's not technically count data.
- (Incidentally, all of the different types of models do give very similar results, shown below).
- Second, would you be able to give me any advice on how to go about comparing the performance of the different models/tests to justify which model to choose.
Code:
tab distvol distvol | Freq. Percent Cum. ------------+----------------------------------- 0 | 1,304 89.38 89.38 1 | 33 2.26 91.64 2 | 57 3.91 95.54 3 | 29 1.99 97.53 4 | 14 0.96 98.49 5 | 14 0.96 99.45 6 | 5 0.34 99.79 7 | 3 0.21 100.00 ------------+----------------------------------- Total | 1,459 100.00
Code:
Fitting Poisson model: Iteration 0: log pseudolikelihood = -829.75972 Iteration 1: log pseudolikelihood = -829.64878 Iteration 2: log pseudolikelihood = -829.64845 Iteration 3: log pseudolikelihood = -829.64845 Fitting constant-only model: Iteration 0: log pseudolikelihood = -743.19607 (not concave) Iteration 1: log pseudolikelihood = -606.19316 Iteration 2: log pseudolikelihood = -599.21043 Iteration 3: log pseudolikelihood = -599.19066 Iteration 4: log pseudolikelihood = -599.19066 Fitting full model: Iteration 0: log pseudolikelihood = -587.16259 Iteration 1: log pseudolikelihood = -584.36333 Iteration 2: log pseudolikelihood = -584.11853 Iteration 3: log pseudolikelihood = -584.11808 Iteration 4: log pseudolikelihood = -584.11808 Negative binomial regression Number of obs = 1,344 Wald chi2(13) = 48.32 Dispersion = mean Prob > chi2 = 0.0000 Log pseudolikelihood = -584.11808 Pseudo R2 = 0.0252 ----------------------------------------------------------------------------------------------- | Robust distvol | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- onlinemed | high exposure | .1395064 .3363322 0.41 0.678 -.5196926 .7987054 | highknow | high knowledge | .2282583 .3450022 0.66 0.508 -.4479336 .9044502 | onlinemed#highknow | high exposure#high knowledge | -1.243398 .5446583 -2.28 0.022 -2.310909 -.1758877 | socialmedia | -.0270818 .0775339 -0.35 0.727 -.1790455 .1248819 age_i | -.0141096 .008021 -1.76 0.079 -.0298306 .0016113 female | -.6162776 .223444 -2.76 0.006 -1.05422 -.1783354 highincome | -.0716774 .2397122 -0.30 0.765 -.5415048 .3981499 partyclose_binary | -1.497653 .4460845 -3.36 0.001 -2.371963 -.6233437 leftright_i | -.0361103 .0507479 -0.71 0.477 -.1355744 .0633539 farlr | -.5992872 .3480854 -1.72 0.085 -1.281522 .0829477 political_mood | .008102 .0098578 0.82 0.411 -.011219 .027423 networkhet12_i | .1115985 .0556922 2.00 0.045 .0024438 .2207531 nptvnews | -.0467189 .0517432 -0.90 0.367 -.1481338 .054696 _cons | -.484885 .5823316 -0.83 0.405 -1.626234 .656464 ------------------------------+---------------------------------------------------------------- /lnalpha | 2.487341 .1500471 2.193254 2.781428 ------------------------------+---------------------------------------------------------------- alpha | 12.02925 1.804953 8.964335 16.14205 -----------------------------------------------------------------------------------------------
Code:
Iteration 0: log pseudolikelihood = -829.75972 Iteration 1: log pseudolikelihood = -829.64878 Iteration 2: log pseudolikelihood = -829.64845 Iteration 3: log pseudolikelihood = -829.64845 Poisson regression Number of obs = 1,344 Wald chi2(13) = 42.61 Log pseudolikelihood = -829.64845 Prob > chi2 = 0.0001 ----------------------------------------------------------------------------------------------- | Robust distvol | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- onlinemed | high exposure | .1520361 .3637021 0.42 0.676 -.560807 .8648792 | highknow | high knowledge | .1991359 .3109782 0.64 0.522 -.4103702 .8086421 | onlinemed#highknow | high exposure#high knowledge | -1.217585 .5514483 -2.21 0.027 -2.298404 -.1367663 | socialmedia | -.0105604 .0821744 -0.13 0.898 -.1716192 .1504983 age_i | -.0106576 .0081525 -1.31 0.191 -.0266363 .005321 female | -.4278774 .258046 -1.66 0.097 -.9336382 .0778834 highincome | .0076763 .2400212 0.03 0.974 -.4627566 .4781092 partyclose_binary | -1.3393 .5511951 -2.43 0.015 -2.419622 -.2589773 leftright_i | -.0679288 .0469811 -1.45 0.148 -.16001 .0241524 farlr | -.5089138 .3878363 -1.31 0.189 -1.269059 .2512312 political_mood | .0072836 .0089259 0.82 0.414 -.0102109 .024778 networkhet12_i | .080292 .0549722 1.46 0.144 -.0274516 .1880356 nptvnews | -.0447907 .041423 -1.08 0.280 -.1259783 .036397 _cons | -.4876739 .6399943 -0.76 0.446 -1.74204 .766692 -----------------------------------------------------------------------------------------------
Code:
Iteration 0: log pseudolikelihood = -928.17693 Iteration 1: log pseudolikelihood = -861.78275 Iteration 2: log pseudolikelihood = -860.77761 Iteration 3: log pseudolikelihood = -860.76821 Iteration 4: log pseudolikelihood = -860.76821 Generalized linear models Number of obs = 1,344 Optimization : ML Residual df = 1,330 Scale parameter = 1 Deviance = 1437.49301 (1/df) Deviance = 1.080822 Pearson = 3385.188563 (1/df) Pearson = 2.545255 Variance function: V(u) = u*(1-u/10) [Binomial] Link function : g(u) = ln(u/(10-u)) [Logit] AIC = 1.301738 Log pseudolikelihood = -860.7682062 BIC = -8143.036 ----------------------------------------------------------------------------------------------- | Robust distvol | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- onlinemed | high exposure | .157355 .3766299 0.42 0.676 -.580826 .8955359 | highknow | high knowledge | .2063968 .321822 0.64 0.521 -.4243627 .8371564 | onlinemed#highknow | high exposure#high knowledge | -1.247359 .5654925 -2.21 0.027 -2.355704 -.1390137 | socialmedia | -.0108449 .0848111 -0.13 0.898 -.1770717 .1553818 age_i | -.0109973 .0084091 -1.31 0.191 -.0274789 .0054843 female | -.4410633 .2655512 -1.66 0.097 -.961534 .0794074 highincome | .0072811 .2479066 0.03 0.977 -.478607 .4931691 partyclose_binary | -1.363248 .5564878 -2.45 0.014 -2.453944 -.2725517 leftright_i | -.0700498 .0484818 -1.44 0.148 -.1650723 .0249728 farlr | -.5202852 .3958464 -1.31 0.189 -1.29613 .2555595 political_mood | .0075074 .0092249 0.81 0.416 -.010573 .0255878 networkhet12_i | .0829316 .0567113 1.46 0.144 -.0282206 .1940837 nptvnews | -.0463583 .0428227 -1.08 0.279 -.1302892 .0375726 _cons | -2.734244 .6614316 -4.13 0.000 -4.030626 -1.437862 -----------------------------------------------------------------------------------------------
Code:
Iteration 0: log pseudolikelihood = -564.33681 Iteration 1: log pseudolikelihood = -546.23464 Iteration 2: log pseudolikelihood = -544.42317 Iteration 3: log pseudolikelihood = -544.39738 Iteration 4: log pseudolikelihood = -544.39733 Iteration 5: log pseudolikelihood = -544.39733 Ordered logistic regression Number of obs = 1,344 Wald chi2(13) = 36.22 Prob > chi2 = 0.0005 Log pseudolikelihood = -544.39733 Pseudo R2 = 0.0353 ----------------------------------------------------------------------------------------------- | Robust distvol | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- onlinemed | high exposure | .0758672 .3551337 0.21 0.831 -.620182 .7719163 | highknow | high knowledge | .2898168 .3289096 0.88 0.378 -.3548342 .9344678 | onlinemed#highknow | high exposure#high knowledge | -1.119558 .560211 -2.00 0.046 -2.217552 -.021565 | socialmedia | -.0388585 .0819758 -0.47 0.635 -.1995281 .1218111 age_i | -.0161103 .0093542 -1.72 0.085 -.0344442 .0022236 female | -.4300516 .2629844 -1.64 0.102 -.9454915 .0853883 highincome | -.0384396 .2422341 -0.16 0.874 -.5132098 .4363305 partyclose_binary | -1.346552 .6240141 -2.16 0.031 -2.569597 -.1235066 leftright_i | -.0849347 .053184 -1.60 0.110 -.1891734 .0193041 farlr | -.5247534 .3937558 -1.33 0.183 -1.296501 .2469938 political_mood | .0027973 .0085472 0.33 0.743 -.0139549 .0195495 networkhet12_i | .0695643 .0470031 1.48 0.139 -.0225601 .1616888 nptvnews | -.0395345 .046652 -0.85 0.397 -.1309707 .0519016 ------------------------------+---------------------------------------------------------------- /cut1 | .6980686 .7310941 -.7348496 2.130987 /cut2 | .9451905 .7192096 -.4644345 2.354816 /cut3 | 1.757095 .7208377 .3442787 3.169911 /cut4 | 2.558683 .7413626 1.105639 4.011727 /cut5 | 3.153227 .7592492 1.665126 4.641328 /cut6 | 4.411359 .8810093 2.684612 6.138105 /cut7 | 6.057117 1.033805 4.030896 8.083338 -----------------------------------------------------------------------------------------------
0 Response to How to choose between different regression models
Post a Comment