first,I use adaptive lasso select the variables:lasso linear income1 gender-popstu, selection(adaptive) stop(0) rseed(12345) nolog. and then obtain coefficient : lassocoef, display(coef) sort(coef) .
But how to predict income which is missing in the next step, many thanks!
clear
input double(income gender age age2 mar minzu hukou hukoulocal edu ind occu health urban region) byte(municipality prov_capital) double(grp pop studs_ratio miniwage grppop popgender popage popstu)
12000 1 .9036546096158996 .8827723918897483 1 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8899324575790826 .09142445088910847
23000 1 .8193299386828627 .7774976570135173 1 1 1 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
15000 1 1.325277964281084 1.4392245619498267 1 1 1 1 2 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.1816292808724636 .09142445088910847
8000 1 .7350052677498259 .6742281551825478 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7732537282617304 .09142445088910847
30000 1 -1.8790595311743172 -1.5325308111277811 0 1 0 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 -.03526657615723008 .09142445088910847
20000 1 .2290572421516046 .09672103814722317 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4232175403096736 .09142445088910847
40200 1 .8193299386828627 .7774976570135173 1 1 1 1 3 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
60000 1 -.4455401253126904 -.5609954006985632 1 1 1 1 6 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .9565026230402643 .09142445088910847
35000 0 -1.288786834643059 -1.2026699751822572 1 1 1 0 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .37310897645350294 .09142445088910847
16000 0 -.023916770647506014 -.16496187425940828 1 1 1 1 4 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.248199446333645 .09142445088910847
15000 1 1.6625766480132314 1.9204804928125974 1 1 1 1 6 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.414986739507168 .09142445088910847
25000 0 -.023916770647506014 -.16496187425940828 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.248199446333645 .09142445088910847
122000 0 -.5298647962457272 -.6341864068506096 1 1 1 1 5 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .8981632583815882 .09142445088910847
75000 0 -.9514881509109117 -.9700629419319181 1 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .6064664350882075 .09142445088910847
25000 1 -1.6260855183752065 -1.4031932797084117 0 1 1 1 5 2 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .13975151781879835 .09142445088910847
90000 1 -1.2044621637100221 -1.1475260664375648 1 1 1 0 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .43144834111217906 .09142445088910847
45000 1 1.1566286224150102 1.2106279947900107 1 1 0 0 2 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.064950551555111 .09142445088910847
8000 0 -1.1201374927769854 -1.0903769246476107 1 1 1 0 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .48978770577085523 .09142445088910847
10000 1 1.1566286224150102 1.2106279947900107 1 1 1 1 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.064950551555111 .09142445088910847
10000 1 .8193299386828627 .7774976570135173 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
3000 0 -.698514138111801 -.7745527200189176 1 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .7814845290642359 .09142445088910847
30000 1 .6506805968167889 .5729638863968398 1 1 1 1 4 2 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7149143636030542 .09142445088910847
5000 1 1.4939273061471576 1.675842061290689 1 1 1 1 1 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.2983080101898157 .09142445088910847
30000 1 -1.373111505576096 -1.2558086508816881 1 1 1 1 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .31476961179482676 .09142445088910847
9000 0 .48203125495071525 .37645104796120854 1 1 1 1 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.598235634285702 .09142445088910847
16000 1 -1.7104101893082435 -1.4483110232267964 0 1 1 0 4 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .08141215316012221 .09142445088910847
60000 0 -1.4574361765091328 -1.3069420935358576 1 1 1 0 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .25643024713615065 .09142445088910847
65000 1 1.1566286224150102 1.2106279947900107 1 1 1 1 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.064950551555111 .09142445088910847
40000 1 -1.6260855183752065 -1.4031932797084117 0 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .13975151781879835 .09142445088910847
20000 0 -.3612154543796535 -.4857991615012553 1 1 1 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.0148419876989405 .09142445088910847
16800 1 .6506805968167889 .5729638863968398 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7149143636030542 .09142445088910847
13000 0 -1.7104101893082435 -1.4483110232267964 1 1 1 0 6 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .08141215316012221 .09142445088910847
40000 1 -1.5417608474421698 -1.3560703031447654 0 1 1 0 6 0 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .1980908824774745 .09142445088910847
24000 0 -1.4574361765091328 -1.3069420935358576 1 0 1 1 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .25643024713615065 .09142445088910847
6000 1 -1.373111505576096 -1.2558086508816881 0 1 1 1 6 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .31476961179482676 .09142445088910847
850 1 .8193299386828627 .7774976570135173 1 1 1 1 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
26000 1 .2290572421516046 .09672103814722317 1 1 1 1 5 2 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4232175403096736 .09142445088910847
12000 1 -1.1201374927769854 -1.0903769246476107 0 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .48978770577085523 .09142445088910847
24000 0 .6506805968167889 .5729638863968398 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
13000 0 1.2409532933480472 1.323923661847288 1 1 0 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 2.1232899162137873 .09142445088910847
30000 1 -1.288786834643059 -1.2026699751822572 1 1 1 1 5 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .37310897645350294 .09142445088910847
10000 1 1.7469013189462683 2.0458075581414437 1 0 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.473326104165844 .09142445088910847
10000 0 -.4455401253126904 -.5609954006985632 1 1 0 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .9565026230402643 .09142445088910847
20000 0 -.9514881509109117 -.9700629419319181 1 1 1 0 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .6064664350882075 .09142445088910847
12000 1 .48203125495071525 .37645104796120854 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.598235634285702 .09142445088910847
100000 1 .9879792805489365 .990052359811241 1 1 0 0 5 3 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.9482718222377589 .09142445088910847
43200 1 -1.0358128218439484 -1.0312225498123953 1 1 1 0 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .5481270704295313 .09142445088910847
20000 1 -.8671634799778748 -.9068981010061795 1 1 1 1 4 0 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .6648057997468837 .09142445088910847
25000 0 -1.373111505576096 -1.2558086508816881 1 1 1 1 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .31476961179482676 .09142445088910847
80000 1 -.19256611251357977 -.32939098397085487 1 0 1 0 6 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.1315207170162929 .09142445088910847
10000 1 -1.963384202107354 -1.5716328555103813 0 1 0 0 3 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 -.09360594081590623 .09142445088910847
12000 1 -.10824144158054289 -.24817904563776236 1 1 0 0 3 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.189860081674969 .09142445088910847
13000 0 .6506805968167889 .5729638863968398 1 0 1 0 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
6000 1 -.2768907834466166 -.40859768925868584 1 1 0 0 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
11000 0 .6506805968167889 .5729638863968398 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
40000 1 -1.2044621637100221 -1.1475260664375648 0 1 1 1 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .43144834111217906 .09142445088910847
30000 1 -.5298647962457272 -.6341864068506096 1 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .8981632583815882 .09142445088910847
43200 1 -1.0358128218439484 -1.0312225498123953 0 1 1 1 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .5481270704295313 .09142445088910847
23000 0 -1.5417608474421698 -1.3560703031447654 0 1 1 0 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .1980908824774745 .09142445088910847
24000 0 -1.1201374927769854 -1.0903769246476107 1 1 0 0 3 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .48978770577085523 .09142445088910847
10000 1 .7350052677498259 .6742281551825478 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7732537282617304 .09142445088910847
35000 0 -1.0358128218439484 -1.0312225498123953 0 1 1 1 5 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .5481270704295313 .09142445088910847
30000 1 -.10824144158054289 -.24817904563776236 1 1 1 1 4 3 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.189860081674969 .09142445088910847
23000 1 .3133819130846415 .18795914170662342 1 1 1 1 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4815569049683497 .09142445088910847
100000 1 -1.373111505576096 -1.2558086508816881 1 1 0 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .31476961179482676 .09142445088910847
25000 1 .2290572421516046 .09672103814722317 1 1 1 0 4 3 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4232175403096736 .09142445088910847
15000 0 -.4455401253126904 -.5609954006985632 1 1 0 0 4 2 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .9565026230402643 .09142445088910847
30000 1 -1.0358128218439484 -1.0312225498123953 1 1 1 0 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .5481270704295313 .09142445088910847
14000 0 -.19256611251357977 -.32939098397085487 1 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.1315207170162929 .09142445088910847
36000 0 1.4096026352141209 1.556530695097627 0 1 1 0 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 2.2399686455311394 .09142445088910847
14000 0 .6506805968167889 .5729638863968398 0 1 1 1 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
30000 1 -1.4574361765091328 -1.3069420935358576 1 1 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .25643024713615065 .09142445088910847
40000 1 -.10824144158054289 -.24817904563776236 1 1 0 0 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.189860081674969 .09142445088910847
36000 1 -1.6260855183752065 -1.4031932797084117 0 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .13975151781879835 .09142445088910847
140000 1 -.2768907834466166 -.40859768925868584 1 1 1 0 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
20000 1 .6506805968167889 .5729638863968398 1 1 1 1 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7149143636030542 .09142445088910847
12000 1 -.8671634799778748 -.9068981010061795 1 1 0 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .6648057997468837 .09142445088910847
12000 0 -.5298647962457272 -.6341864068506096 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .8981632583815882 .09142445088910847
24000 0 -.7828388090448378 -.8417280270351793 1 1 1 1 5 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .7231451644055598 .09142445088910847
20000 0 -.8671634799778748 -.9068981010061795 1 1 1 0 5 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .6648057997468837 .09142445088910847
0 1 -1.5417608474421698 -1.3560703031447654 0 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .1980908824774745 .09142445088910847
0 1 -1.2044621637100221 -1.1475260664375648 1 1 1 0 5 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .43144834111217906 .09142445088910847
0 1 -.9514881509109117 -.9700629419319181 0 1 1 0 7 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .6064664350882075 .09142445088910847
0 0 -1.2044621637100221 -1.1475260664375648 0 0 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .43144834111217906 .09142445088910847
0 1 -.2768907834466166 -.40859768925868584 1 1 1 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
0 1 -.3612154543796535 -.4857991615012553 1 1 1 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0148419876989405 .09142445088910847
0 1 -.2768907834466166 -.40859768925868584 1 1 1 1 6 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
0 1 -.023916770647506014 -.16496187425940828 1 1 0 0 3 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.248199446333645 .09142445088910847
0 1 -.3612154543796535 -.4857991615012553 1 1 0 0 3 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0148419876989405 .09142445088910847
0 1 -1.288786834643059 -1.2026699751822572 0 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .37310897645350294 .09142445088910847
0 0 -1.4574361765091328 -1.3069420935358576 1 1 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .25643024713615065 .09142445088910847
0 1 -.698514138111801 -.7745527200189176 1 1 0 0 3 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .7814845290642359 .09142445088910847
0 0 .14473257121856772 .007488167633084476 1 0 0 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.3648781756509973 .09142445088910847
0 0 -1.2044621637100221 -1.1475260664375648 0 0 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .43144834111217906 .09142445088910847
0 0 -1.0358128218439484 -1.0312225498123953 1 0 1 0 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .5481270704295313 .09142445088910847
0 0 -.3612154543796535 -.4857991615012553 1 0 1 0 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.0148419876989405 .09142445088910847
0 0 -1.373111505576096 -1.2558086508816881 1 1 0 0 6 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .31476961179482676 .09142445088910847
0 1 -.023916770647506014 -.16496187425940828 1 1 1 1 4 2 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.248199446333645 .09142445088910847
0 0 -1.5417608474421698 -1.3560703031447654 0 1 1 0 6 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .1980908824774745 .09142445088910847
end
Related Posts with using adaptive Lasso regression select variables, but how to use the lasso results to predict income which is missing.
Using a loop to compare observations of a variableHi All, I have a dataset which looks something like below: ID Amount month max_amount max_month N…
strpos function not foundwhen I even I put this command I get this result . gen has_x= strpos (ICD , "X") >0 strpos not f…
Kaplan Meier risk table problemDear Statalist, I am using Stata 14.2 on Mac. I have created a propensity score IPT weighted sample…
Creating a variable that identifies and calculates overlapping time periodsHi everyone, I am currently working on data that shows if respondents of a survey worked part time …
Testing coefficient difference in 2 probit modelsI would like to test the significance of difference between the coefficients in 2 probit models. I f…
Subscribe to:
Post Comments (Atom)
0 Response to using adaptive Lasso regression select variables, but how to use the lasso results to predict income which is missing.
Post a Comment