first,I use adaptive lasso select the variables:lasso linear income1 gender-popstu, selection(adaptive) stop(0) rseed(12345) nolog. and then obtain coefficient : lassocoef, display(coef) sort(coef) .
But how to predict income which is missing in the next step, many thanks!
clear
input double(income gender age age2 mar minzu hukou hukoulocal edu ind occu health urban region) byte(municipality prov_capital) double(grp pop studs_ratio miniwage grppop popgender popage popstu)
12000 1 .9036546096158996 .8827723918897483 1 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8899324575790826 .09142445088910847
23000 1 .8193299386828627 .7774976570135173 1 1 1 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
15000 1 1.325277964281084 1.4392245619498267 1 1 1 1 2 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.1816292808724636 .09142445088910847
8000 1 .7350052677498259 .6742281551825478 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7732537282617304 .09142445088910847
30000 1 -1.8790595311743172 -1.5325308111277811 0 1 0 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 -.03526657615723008 .09142445088910847
20000 1 .2290572421516046 .09672103814722317 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4232175403096736 .09142445088910847
40200 1 .8193299386828627 .7774976570135173 1 1 1 1 3 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
60000 1 -.4455401253126904 -.5609954006985632 1 1 1 1 6 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .9565026230402643 .09142445088910847
35000 0 -1.288786834643059 -1.2026699751822572 1 1 1 0 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .37310897645350294 .09142445088910847
16000 0 -.023916770647506014 -.16496187425940828 1 1 1 1 4 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.248199446333645 .09142445088910847
15000 1 1.6625766480132314 1.9204804928125974 1 1 1 1 6 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.414986739507168 .09142445088910847
25000 0 -.023916770647506014 -.16496187425940828 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.248199446333645 .09142445088910847
122000 0 -.5298647962457272 -.6341864068506096 1 1 1 1 5 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .8981632583815882 .09142445088910847
75000 0 -.9514881509109117 -.9700629419319181 1 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .6064664350882075 .09142445088910847
25000 1 -1.6260855183752065 -1.4031932797084117 0 1 1 1 5 2 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .13975151781879835 .09142445088910847
90000 1 -1.2044621637100221 -1.1475260664375648 1 1 1 0 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .43144834111217906 .09142445088910847
45000 1 1.1566286224150102 1.2106279947900107 1 1 0 0 2 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.064950551555111 .09142445088910847
8000 0 -1.1201374927769854 -1.0903769246476107 1 1 1 0 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .48978770577085523 .09142445088910847
10000 1 1.1566286224150102 1.2106279947900107 1 1 1 1 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.064950551555111 .09142445088910847
10000 1 .8193299386828627 .7774976570135173 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
3000 0 -.698514138111801 -.7745527200189176 1 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .7814845290642359 .09142445088910847
30000 1 .6506805968167889 .5729638863968398 1 1 1 1 4 2 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7149143636030542 .09142445088910847
5000 1 1.4939273061471576 1.675842061290689 1 1 1 1 1 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.2983080101898157 .09142445088910847
30000 1 -1.373111505576096 -1.2558086508816881 1 1 1 1 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .31476961179482676 .09142445088910847
9000 0 .48203125495071525 .37645104796120854 1 1 1 1 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.598235634285702 .09142445088910847
16000 1 -1.7104101893082435 -1.4483110232267964 0 1 1 0 4 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .08141215316012221 .09142445088910847
60000 0 -1.4574361765091328 -1.3069420935358576 1 1 1 0 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .25643024713615065 .09142445088910847
65000 1 1.1566286224150102 1.2106279947900107 1 1 1 1 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.064950551555111 .09142445088910847
40000 1 -1.6260855183752065 -1.4031932797084117 0 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .13975151781879835 .09142445088910847
20000 0 -.3612154543796535 -.4857991615012553 1 1 1 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.0148419876989405 .09142445088910847
16800 1 .6506805968167889 .5729638863968398 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7149143636030542 .09142445088910847
13000 0 -1.7104101893082435 -1.4483110232267964 1 1 1 0 6 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .08141215316012221 .09142445088910847
40000 1 -1.5417608474421698 -1.3560703031447654 0 1 1 0 6 0 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .1980908824774745 .09142445088910847
24000 0 -1.4574361765091328 -1.3069420935358576 1 0 1 1 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .25643024713615065 .09142445088910847
6000 1 -1.373111505576096 -1.2558086508816881 0 1 1 1 6 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .31476961179482676 .09142445088910847
850 1 .8193299386828627 .7774976570135173 1 1 1 1 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
26000 1 .2290572421516046 .09672103814722317 1 1 1 1 5 2 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4232175403096736 .09142445088910847
12000 1 -1.1201374927769854 -1.0903769246476107 0 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .48978770577085523 .09142445088910847
24000 0 .6506805968167889 .5729638863968398 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
13000 0 1.2409532933480472 1.323923661847288 1 1 0 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 2.1232899162137873 .09142445088910847
30000 1 -1.288786834643059 -1.2026699751822572 1 1 1 1 5 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .37310897645350294 .09142445088910847
10000 1 1.7469013189462683 2.0458075581414437 1 0 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.473326104165844 .09142445088910847
10000 0 -.4455401253126904 -.5609954006985632 1 1 0 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .9565026230402643 .09142445088910847
20000 0 -.9514881509109117 -.9700629419319181 1 1 1 0 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .6064664350882075 .09142445088910847
12000 1 .48203125495071525 .37645104796120854 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.598235634285702 .09142445088910847
100000 1 .9879792805489365 .990052359811241 1 1 0 0 5 3 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.9482718222377589 .09142445088910847
43200 1 -1.0358128218439484 -1.0312225498123953 1 1 1 0 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .5481270704295313 .09142445088910847
20000 1 -.8671634799778748 -.9068981010061795 1 1 1 1 4 0 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .6648057997468837 .09142445088910847
25000 0 -1.373111505576096 -1.2558086508816881 1 1 1 1 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .31476961179482676 .09142445088910847
80000 1 -.19256611251357977 -.32939098397085487 1 0 1 0 6 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.1315207170162929 .09142445088910847
10000 1 -1.963384202107354 -1.5716328555103813 0 1 0 0 3 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 -.09360594081590623 .09142445088910847
12000 1 -.10824144158054289 -.24817904563776236 1 1 0 0 3 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.189860081674969 .09142445088910847
13000 0 .6506805968167889 .5729638863968398 1 0 1 0 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
6000 1 -.2768907834466166 -.40859768925868584 1 1 0 0 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
11000 0 .6506805968167889 .5729638863968398 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
40000 1 -1.2044621637100221 -1.1475260664375648 0 1 1 1 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .43144834111217906 .09142445088910847
30000 1 -.5298647962457272 -.6341864068506096 1 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .8981632583815882 .09142445088910847
43200 1 -1.0358128218439484 -1.0312225498123953 0 1 1 1 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .5481270704295313 .09142445088910847
23000 0 -1.5417608474421698 -1.3560703031447654 0 1 1 0 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .1980908824774745 .09142445088910847
24000 0 -1.1201374927769854 -1.0903769246476107 1 1 0 0 3 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .48978770577085523 .09142445088910847
10000 1 .7350052677498259 .6742281551825478 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7732537282617304 .09142445088910847
35000 0 -1.0358128218439484 -1.0312225498123953 0 1 1 1 5 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .5481270704295313 .09142445088910847
30000 1 -.10824144158054289 -.24817904563776236 1 1 1 1 4 3 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.189860081674969 .09142445088910847
23000 1 .3133819130846415 .18795914170662342 1 1 1 1 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4815569049683497 .09142445088910847
100000 1 -1.373111505576096 -1.2558086508816881 1 1 0 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .31476961179482676 .09142445088910847
25000 1 .2290572421516046 .09672103814722317 1 1 1 0 4 3 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4232175403096736 .09142445088910847
15000 0 -.4455401253126904 -.5609954006985632 1 1 0 0 4 2 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .9565026230402643 .09142445088910847
30000 1 -1.0358128218439484 -1.0312225498123953 1 1 1 0 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .5481270704295313 .09142445088910847
14000 0 -.19256611251357977 -.32939098397085487 1 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.1315207170162929 .09142445088910847
36000 0 1.4096026352141209 1.556530695097627 0 1 1 0 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 2.2399686455311394 .09142445088910847
14000 0 .6506805968167889 .5729638863968398 0 1 1 1 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
30000 1 -1.4574361765091328 -1.3069420935358576 1 1 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .25643024713615065 .09142445088910847
40000 1 -.10824144158054289 -.24817904563776236 1 1 0 0 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.189860081674969 .09142445088910847
36000 1 -1.6260855183752065 -1.4031932797084117 0 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .13975151781879835 .09142445088910847
140000 1 -.2768907834466166 -.40859768925868584 1 1 1 0 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
20000 1 .6506805968167889 .5729638863968398 1 1 1 1 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7149143636030542 .09142445088910847
12000 1 -.8671634799778748 -.9068981010061795 1 1 0 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .6648057997468837 .09142445088910847
12000 0 -.5298647962457272 -.6341864068506096 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .8981632583815882 .09142445088910847
24000 0 -.7828388090448378 -.8417280270351793 1 1 1 1 5 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .7231451644055598 .09142445088910847
20000 0 -.8671634799778748 -.9068981010061795 1 1 1 0 5 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .6648057997468837 .09142445088910847
0 1 -1.5417608474421698 -1.3560703031447654 0 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .1980908824774745 .09142445088910847
0 1 -1.2044621637100221 -1.1475260664375648 1 1 1 0 5 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .43144834111217906 .09142445088910847
0 1 -.9514881509109117 -.9700629419319181 0 1 1 0 7 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .6064664350882075 .09142445088910847
0 0 -1.2044621637100221 -1.1475260664375648 0 0 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .43144834111217906 .09142445088910847
0 1 -.2768907834466166 -.40859768925868584 1 1 1 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
0 1 -.3612154543796535 -.4857991615012553 1 1 1 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0148419876989405 .09142445088910847
0 1 -.2768907834466166 -.40859768925868584 1 1 1 1 6 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
0 1 -.023916770647506014 -.16496187425940828 1 1 0 0 3 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.248199446333645 .09142445088910847
0 1 -.3612154543796535 -.4857991615012553 1 1 0 0 3 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0148419876989405 .09142445088910847
0 1 -1.288786834643059 -1.2026699751822572 0 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .37310897645350294 .09142445088910847
0 0 -1.4574361765091328 -1.3069420935358576 1 1 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .25643024713615065 .09142445088910847
0 1 -.698514138111801 -.7745527200189176 1 1 0 0 3 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .7814845290642359 .09142445088910847
0 0 .14473257121856772 .007488167633084476 1 0 0 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.3648781756509973 .09142445088910847
0 0 -1.2044621637100221 -1.1475260664375648 0 0 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .43144834111217906 .09142445088910847
0 0 -1.0358128218439484 -1.0312225498123953 1 0 1 0 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .5481270704295313 .09142445088910847
0 0 -.3612154543796535 -.4857991615012553 1 0 1 0 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.0148419876989405 .09142445088910847
0 0 -1.373111505576096 -1.2558086508816881 1 1 0 0 6 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .31476961179482676 .09142445088910847
0 1 -.023916770647506014 -.16496187425940828 1 1 1 1 4 2 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.248199446333645 .09142445088910847
0 0 -1.5417608474421698 -1.3560703031447654 0 1 1 0 6 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .1980908824774745 .09142445088910847
end
Related Posts with using adaptive Lasso regression select variables, but how to use the lasso results to predict income which is missing.
vce(cluster) with lsdvcHello..i am stata 13 user. I want to integrate vce (cluster) with xtlsdvc Log_sales varietyofproduct…
How to hide a specific line property appears in x axis in twoway plot?Dear Stata users, I want to hide a specific line that appears in the x-axis. Here is my code for two…
GSEM errorHello, Am trying to use gsem probit and finf the following errors: HTML Code: _gsem_d2Sigma_d…
Binary Response ModelI want to estimate the probability of authoritarian leadership failure as a function of five explana…
Analysing multiple response variablesI want to analyse the relationship (using Chi-square test) between (AgeNEW, Gender) Vs (Q42-producti…
Subscribe to:
Post Comments (Atom)
0 Response to using adaptive Lasso regression select variables, but how to use the lasso results to predict income which is missing.
Post a Comment