first,I use adaptive lasso select the variables:lasso linear income1 gender-popstu, selection(adaptive) stop(0) rseed(12345) nolog. and then obtain coefficient : lassocoef, display(coef) sort(coef) .
But how to predict income which is missing in the next step, many thanks!
clear
input double(income gender age age2 mar minzu hukou hukoulocal edu ind occu health urban region) byte(municipality prov_capital) double(grp pop studs_ratio miniwage grppop popgender popage popstu)
12000 1 .9036546096158996 .8827723918897483 1 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8899324575790826 .09142445088910847
23000 1 .8193299386828627 .7774976570135173 1 1 1 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
15000 1 1.325277964281084 1.4392245619498267 1 1 1 1 2 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.1816292808724636 .09142445088910847
8000 1 .7350052677498259 .6742281551825478 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7732537282617304 .09142445088910847
30000 1 -1.8790595311743172 -1.5325308111277811 0 1 0 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 -.03526657615723008 .09142445088910847
20000 1 .2290572421516046 .09672103814722317 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4232175403096736 .09142445088910847
40200 1 .8193299386828627 .7774976570135173 1 1 1 1 3 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
60000 1 -.4455401253126904 -.5609954006985632 1 1 1 1 6 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .9565026230402643 .09142445088910847
35000 0 -1.288786834643059 -1.2026699751822572 1 1 1 0 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .37310897645350294 .09142445088910847
16000 0 -.023916770647506014 -.16496187425940828 1 1 1 1 4 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.248199446333645 .09142445088910847
15000 1 1.6625766480132314 1.9204804928125974 1 1 1 1 6 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.414986739507168 .09142445088910847
25000 0 -.023916770647506014 -.16496187425940828 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.248199446333645 .09142445088910847
122000 0 -.5298647962457272 -.6341864068506096 1 1 1 1 5 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .8981632583815882 .09142445088910847
75000 0 -.9514881509109117 -.9700629419319181 1 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .6064664350882075 .09142445088910847
25000 1 -1.6260855183752065 -1.4031932797084117 0 1 1 1 5 2 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .13975151781879835 .09142445088910847
90000 1 -1.2044621637100221 -1.1475260664375648 1 1 1 0 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .43144834111217906 .09142445088910847
45000 1 1.1566286224150102 1.2106279947900107 1 1 0 0 2 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.064950551555111 .09142445088910847
8000 0 -1.1201374927769854 -1.0903769246476107 1 1 1 0 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .48978770577085523 .09142445088910847
10000 1 1.1566286224150102 1.2106279947900107 1 1 1 1 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.064950551555111 .09142445088910847
10000 1 .8193299386828627 .7774976570135173 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
3000 0 -.698514138111801 -.7745527200189176 1 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .7814845290642359 .09142445088910847
30000 1 .6506805968167889 .5729638863968398 1 1 1 1 4 2 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7149143636030542 .09142445088910847
5000 1 1.4939273061471576 1.675842061290689 1 1 1 1 1 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.2983080101898157 .09142445088910847
30000 1 -1.373111505576096 -1.2558086508816881 1 1 1 1 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .31476961179482676 .09142445088910847
9000 0 .48203125495071525 .37645104796120854 1 1 1 1 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.598235634285702 .09142445088910847
16000 1 -1.7104101893082435 -1.4483110232267964 0 1 1 0 4 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .08141215316012221 .09142445088910847
60000 0 -1.4574361765091328 -1.3069420935358576 1 1 1 0 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .25643024713615065 .09142445088910847
65000 1 1.1566286224150102 1.2106279947900107 1 1 1 1 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.064950551555111 .09142445088910847
40000 1 -1.6260855183752065 -1.4031932797084117 0 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .13975151781879835 .09142445088910847
20000 0 -.3612154543796535 -.4857991615012553 1 1 1 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.0148419876989405 .09142445088910847
16800 1 .6506805968167889 .5729638863968398 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7149143636030542 .09142445088910847
13000 0 -1.7104101893082435 -1.4483110232267964 1 1 1 0 6 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .08141215316012221 .09142445088910847
40000 1 -1.5417608474421698 -1.3560703031447654 0 1 1 0 6 0 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .1980908824774745 .09142445088910847
24000 0 -1.4574361765091328 -1.3069420935358576 1 0 1 1 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .25643024713615065 .09142445088910847
6000 1 -1.373111505576096 -1.2558086508816881 0 1 1 1 6 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .31476961179482676 .09142445088910847
850 1 .8193299386828627 .7774976570135173 1 1 1 1 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.8315930929204065 .09142445088910847
26000 1 .2290572421516046 .09672103814722317 1 1 1 1 5 2 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4232175403096736 .09142445088910847
12000 1 -1.1201374927769854 -1.0903769246476107 0 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .48978770577085523 .09142445088910847
24000 0 .6506805968167889 .5729638863968398 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
13000 0 1.2409532933480472 1.323923661847288 1 1 0 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 2.1232899162137873 .09142445088910847
30000 1 -1.288786834643059 -1.2026699751822572 1 1 1 1 5 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .37310897645350294 .09142445088910847
10000 1 1.7469013189462683 2.0458075581414437 1 0 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 2.473326104165844 .09142445088910847
10000 0 -.4455401253126904 -.5609954006985632 1 1 0 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .9565026230402643 .09142445088910847
20000 0 -.9514881509109117 -.9700629419319181 1 1 1 0 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .6064664350882075 .09142445088910847
12000 1 .48203125495071525 .37645104796120854 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.598235634285702 .09142445088910847
100000 1 .9879792805489365 .990052359811241 1 1 0 0 5 3 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.9482718222377589 .09142445088910847
43200 1 -1.0358128218439484 -1.0312225498123953 1 1 1 0 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .5481270704295313 .09142445088910847
20000 1 -.8671634799778748 -.9068981010061795 1 1 1 1 4 0 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .6648057997468837 .09142445088910847
25000 0 -1.373111505576096 -1.2558086508816881 1 1 1 1 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .31476961179482676 .09142445088910847
80000 1 -.19256611251357977 -.32939098397085487 1 0 1 0 6 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.1315207170162929 .09142445088910847
10000 1 -1.963384202107354 -1.5716328555103813 0 1 0 0 3 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 -.09360594081590623 .09142445088910847
12000 1 -.10824144158054289 -.24817904563776236 1 1 0 0 3 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.189860081674969 .09142445088910847
13000 0 .6506805968167889 .5729638863968398 1 0 1 0 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
6000 1 -.2768907834466166 -.40859768925868584 1 1 0 0 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
11000 0 .6506805968167889 .5729638863968398 1 1 1 1 4 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
40000 1 -1.2044621637100221 -1.1475260664375648 0 1 1 1 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .43144834111217906 .09142445088910847
30000 1 -.5298647962457272 -.6341864068506096 1 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .8981632583815882 .09142445088910847
43200 1 -1.0358128218439484 -1.0312225498123953 0 1 1 1 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .5481270704295313 .09142445088910847
23000 0 -1.5417608474421698 -1.3560703031447654 0 1 1 0 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .1980908824774745 .09142445088910847
24000 0 -1.1201374927769854 -1.0903769246476107 1 1 0 0 3 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .48978770577085523 .09142445088910847
10000 1 .7350052677498259 .6742281551825478 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7732537282617304 .09142445088910847
35000 0 -1.0358128218439484 -1.0312225498123953 0 1 1 1 5 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .5481270704295313 .09142445088910847
30000 1 -.10824144158054289 -.24817904563776236 1 1 1 1 4 3 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.189860081674969 .09142445088910847
23000 1 .3133819130846415 .18795914170662342 1 1 1 1 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4815569049683497 .09142445088910847
100000 1 -1.373111505576096 -1.2558086508816881 1 1 0 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .31476961179482676 .09142445088910847
25000 1 .2290572421516046 .09672103814722317 1 1 1 0 4 3 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.4232175403096736 .09142445088910847
15000 0 -.4455401253126904 -.5609954006985632 1 1 0 0 4 2 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .9565026230402643 .09142445088910847
30000 1 -1.0358128218439484 -1.0312225498123953 1 1 1 0 6 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .5481270704295313 .09142445088910847
14000 0 -.19256611251357977 -.32939098397085487 1 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.1315207170162929 .09142445088910847
36000 0 1.4096026352141209 1.556530695097627 0 1 1 0 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 2.2399686455311394 .09142445088910847
14000 0 .6506805968167889 .5729638863968398 0 1 1 1 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.7149143636030542 .09142445088910847
30000 1 -1.4574361765091328 -1.3069420935358576 1 1 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .25643024713615065 .09142445088910847
40000 1 -.10824144158054289 -.24817904563776236 1 1 0 0 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.189860081674969 .09142445088910847
36000 1 -1.6260855183752065 -1.4031932797084117 0 1 1 1 4 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .13975151781879835 .09142445088910847
140000 1 -.2768907834466166 -.40859768925868584 1 1 1 0 4 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
20000 1 .6506805968167889 .5729638863968398 1 1 1 1 5 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.7149143636030542 .09142445088910847
12000 1 -.8671634799778748 -.9068981010061795 1 1 0 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .6648057997468837 .09142445088910847
12000 0 -.5298647962457272 -.6341864068506096 1 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .8981632583815882 .09142445088910847
24000 0 -.7828388090448378 -.8417280270351793 1 1 1 1 5 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .7231451644055598 .09142445088910847
20000 0 -.8671634799778748 -.9068981010061795 1 1 1 0 5 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .6648057997468837 .09142445088910847
0 1 -1.5417608474421698 -1.3560703031447654 0 1 1 1 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .1980908824774745 .09142445088910847
0 1 -1.2044621637100221 -1.1475260664375648 1 1 1 0 5 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .43144834111217906 .09142445088910847
0 1 -.9514881509109117 -.9700629419319181 0 1 1 0 7 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .6064664350882075 .09142445088910847
0 0 -1.2044621637100221 -1.1475260664375648 0 0 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .43144834111217906 .09142445088910847
0 1 -.2768907834466166 -.40859768925868584 1 1 1 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
0 1 -.3612154543796535 -.4857991615012553 1 1 1 0 3 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0148419876989405 .09142445088910847
0 1 -.2768907834466166 -.40859768925868584 1 1 1 1 6 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0731813523576166 .09142445088910847
0 1 -.023916770647506014 -.16496187425940828 1 1 0 0 3 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.248199446333645 .09142445088910847
0 1 -.3612154543796535 -.4857991615012553 1 1 0 0 3 3 7 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.0148419876989405 .09142445088910847
0 1 -1.288786834643059 -1.2026699751822572 0 1 1 1 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .37310897645350294 .09142445088910847
0 0 -1.4574361765091328 -1.3069420935358576 1 1 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .25643024713615065 .09142445088910847
0 1 -.698514138111801 -.7745527200189176 1 1 0 0 3 3 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 .7814845290642359 .09142445088910847
0 0 .14473257121856772 .007488167633084476 1 0 0 0 3 0 0 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.3648781756509973 .09142445088910847
0 0 -1.2044621637100221 -1.1475260664375648 0 0 1 0 7 3 6 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .43144834111217906 .09142445088910847
0 0 -1.0358128218439484 -1.0312225498123953 1 0 1 0 5 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .5481270704295313 .09142445088910847
0 0 -.3612154543796535 -.4857991615012553 1 0 1 0 4 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 1.0148419876989405 .09142445088910847
0 0 -1.373111505576096 -1.2558086508816881 1 1 0 0 6 3 4 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .31476961179482676 .09142445088910847
0 1 -.023916770647506014 -.16496187425940828 1 1 1 1 4 2 2 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 2.0391475732741338 1.248199446333645 .09142445088910847
0 0 -1.5417608474421698 -1.3560703031447654 0 1 1 0 6 3 5 3 1 3 1 0 2.114580593626381 1.427526295729116 -.492691300783646 .8903201011726182 1.864472886803907 -.75907363723971 .1980908824774745 .09142445088910847
end
Related Posts with using adaptive Lasso regression select variables, but how to use the lasso results to predict income which is missing.
Weakly balanced to Strongly balanced datasetHi! I would like to seek assistance on how can I convert the dataset from 'weakly balanced' to 'stro…
Panel Data EstimationHello Everyone. I wanted to ask this . I am looking at firm level data and ROA as dependent variable…
Statistics on different subgroupsHello, Is there a way to compute summary statistics (mean) of many possibly overlapping subgroups in…
Fixed effects and Control function approachHello Expert, I am trying to apply the fixed effects estimator and control function approach in cont…
SVAR with permanent and transitory shockHi! I am trying to model an SVAR of two variables, log of the real cupper price (I(1)) and non minin…
Subscribe to:
Post Comments (Atom)
0 Response to using adaptive Lasso regression select variables, but how to use the lasso results to predict income which is missing.
Post a Comment