I am struggling to compute the average marginal effects using a Tobit allowing for heteroskedasticity. Any suggestions on this will be highly appreciated.
My dependent variable is a continuous variable that takes nonnegative values only when observations in my data violated some economic assumptions. Otherwise, it is zero (54% of the sample). This variable measures the amount of budget that can be extracted from an individual who violated those assumptions. Hence, I think a Tobit model would be suitable.
I conducted a Likelihood-ratio test, which rejected the null of homoskedasticity.
Therefore, I am running the following heteroskedastic Tobit:
Code:
capture program drop het_tob
program define het_tob
qui {
args lnf XB WA
replace `lnf' = -0.5*(ln(2*_pi)+ln(exp(`WA')^2)+(($ML_y1-`XB')^2/exp(`WA')^2)) if $ML_y1>0 & $ML_y1!=.
replace `lnf' = ln(1-normprob(`XB'/exp(`WA'))) if $ML_y1<=0
}
end
ml model lf het_tob (Tobit: MPImax = crtstd age_years age2) (Tobhet: crtstd age_years age2), title(Tobit with Heteroscedasticity)
ml maximize, difficult nolog
Tobit with Heteroscedasticity Number of obs = 205
Wald chi2(3) = 11.79
Log likelihood = -64.449366 Prob > chi2 = 0.0081
------------------------------------------------------------------------------
MPImax | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Tobit |
crtstd | -.0448083 .021168 -2.12 0.034 -.0862968 -.0033199
age_years | -.0160767 .0066348 -2.42 0.015 -.0290807 -.0030726
age2 | .0002018 .0000952 2.12 0.034 .0000153 .0003883
_cons | .2392886 .1001342 2.39 0.017 .0430292 .4355481
-------------+----------------------------------------------------------------
Tobhet |
crtstd | .1956093 .0843663 2.32 0.020 .0302543 .3609642
age_years | .0084042 .025229 0.33 0.739 -.0410436 .0578521
age2 | .000042 .0003784 0.11 0.912 -.0006997 .0007838
_cons | -1.757924 .3580635 -4.91 0.000 -2.459716 -1.056133
------------------------------------------------------------------------------Code:
margins, dydx(crtstd)
Average marginal effects Number of obs = 205
Model VCE : OIM
Expression : Linear prediction, predict()
dy/dx w.r.t. : crtstd
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
crtstd | -.0448083 .021168 -2.12 0.034 -.0862968 -.0033199
------------------------------------------------------------------------------I appreciate any advice on this.
Thanks!
Gastón
0 Response to Marginal effects with a heteroskedastic tobit
Post a Comment