Hello everyone,
I´m working for the first time with gsem (have used sem in the past, but never with latent variables) but some of my paths have constraints. From origen to iseienc and from CapSocial to iseienc both paths are constrained in 1. I dont know why this is happening, is there a way to remove the constraints?
I have tried clicking on the variable properties, but the constraints option is empty.
I have not defined any constraints and the default should be no constraints.
Another problem i have is that model does not converge, is there a way to fix this ? I have limited the iterations so it doesnt go on forever. Does this mean i should drop the model if it doesnt converge?
I dont have this issues if i use SEM, but im using gsem becouse i want to add a factor variable later on.
Thanks in advanced.
Array
Code:
gsem (eduenc -> iseienc, ) (eduenc -> CapSocial, ) (origen -> edumad, ) (origen -> edupad, ) (origen -> iseienc, ) (orige > n -> eduenc, ) (origen -> iseipad, ) (CapSocial -> Promedio, ) (CapSocial -> Rango, ) (CapSocial -> Cantidad, ) (CapSoc > ial -> iseienc, ), iterate(10) latent(origen CapSocial ) nocapslatent Fitting fixed-effects model: Iteration 0: log likelihood = -28992.582 Iteration 1: log likelihood = -28992.582 Refining starting values: Grid node 0: log likelihood = -28252.542 Fitting full model: Iteration 0: log likelihood = -28252.542 (not concave) Iteration 1: log likelihood = -28146.861 (not concave) Iteration 2: log likelihood = -28004.628 (not concave) Iteration 3: log likelihood = -27919.286 (not concave) Iteration 4: log likelihood = -27754.613 (not concave) Iteration 5: log likelihood = -27666.845 (not concave) Iteration 6: log likelihood = -27609.593 (not concave) Iteration 7: log likelihood = -27575.328 (not concave) Iteration 8: log likelihood = -27569.421 (not concave) Iteration 9: log likelihood = -27565.038 (not concave) Iteration 10: log likelihood = -27561.758 (not concave) convergence not achieved Generalized structural equation model Number of obs = 1065 Log likelihood = -27561.758 ( 1) [iseienc]CapSocial = 1 ( 2) [iseienc]origen = 1 --------------------------------------------------------------------------------- | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------+---------------------------------------------------------------- iseienc <- | eduenc | 3.298683 .1417819 23.27 0.000 3.020796 3.576571 CapSocial | 1 (constrained) origen | 1 (constrained) _cons | -.0889786 1.867755 -0.05 0.962 -3.749711 3.571754 ----------------+---------------------------------------------------------------- edumad <- | origen | 1.130008 .1737318 6.50 0.000 .7894996 1.470516 _cons | 8.035564 .1430889 56.16 0.000 7.755115 8.316013 ----------------+---------------------------------------------------------------- edupad <- | origen | 1.354431 .2069727 6.54 0.000 .9487722 1.76009 _cons | 8.335485 .1505348 55.37 0.000 8.040442 8.630527 ----------------+---------------------------------------------------------------- eduenc <- | origen | .7723909 .1216538 6.35 0.000 .5339538 1.010828 _cons | 12.03884 .1281875 93.92 0.000 11.7876 12.29008 ----------------+---------------------------------------------------------------- CapSocial <- | eduenc | .215886 .051505 4.19 0.000 .1149381 .3168339 ----------------+---------------------------------------------------------------- iseipad <- | origen | 4.610932 .7088203 6.51 0.000 3.22167 6.000194 _cons | 35.69681 .602912 59.21 0.000 34.51512 36.87849 ----------------+---------------------------------------------------------------- Promedio <- | CapSocial | 1.280268 .0986791 12.97 0.000 1.08686 1.473675 _cons | 41.47886 .9247388 44.85 0.000 39.66641 43.29132 ----------------+---------------------------------------------------------------- Rango <- | CapSocial | 3.786942 .2248784 16.84 0.000 3.346189 4.227696 _cons | 38.41039 2.401502 15.99 0.000 33.70353 43.11725 ----------------+---------------------------------------------------------------- Cantidad <- | CapSocial | .1946782 .012783 15.23 0.000 .169624 .2197325 _cons | 3.58376 .1295336 27.67 0.000 3.329879 3.837641 ----------------+---------------------------------------------------------------- var(e.CapSocial)| 41.95461 5.503892 32.44242 54.25579 var(origen)| 10.69443 3.291886 5.849878 19.55099 ----------------+---------------------------------------------------------------- var(e.iseienc)| 257.2707 12.18112 234.4704 282.2881 var(e.edumad)| 7.893567 .4534471 7.053033 8.83427 var(e.edupad)| 4.060075 .4400654 3.28302 5.021049 var(e.eduenc)| 11.1164 .5270597 10.12993 12.19894 var(e.iseipad)| 149.3474 8.319458 133.9002 166.5767 var(e.Promedio)| 178.8124 7.96542 163.8626 195.1262 var(e.Rango)| 2.626589 . . . var(e.Cantidad)| 1.579653 .075704 1.438031 1.735222 --------------------------------------------------------------------------------- Warning: convergence not achieved
0 Response to Constraints and Convergence in GSEM
Post a Comment