Hi Statalist member,

I have run a regression of cash flow volatility (s_oina_v1_w01) on several independent variables. The coefficients of the independent variables are much greater than 1. After a while searching for the reasons, this issue might be caused by multicollinearity. I use vif command to check and found that if I exclude year fixed effect, the vif will decrease to normal. However, the betas of independent variables are still greater than 1. The question is: can betas be greater than 1 or they should be bounded between 0 and 1?

My first model including year fixed effects
Code:
reg s_oina_v1_w01 vc pe $CONTROLSF i.fyear if nomiss==1, cluster (gvkey_n)

Linear regression                               Number of obs     =     42,240
F(64, 5187)       =      55.64
Prob > F          =     0.0000
R-squared         =     0.3537
Root MSE          =     23.421

(Std. Err. adjusted for 5,188 clusters in gvkey_n)

Robust
s_oina_v1~01       Coef.   Std. Err.      t    P>t     [95% Conf. Interval]

vc     2.60776   .5108771     5.10   0.000     1.606225    3.609294
pe    -.431211   .4109789    -1.05   0.294    -1.236903    .3744809
MB2_w01    2.588564   .1564188    16.55   0.000     2.281917     2.89521
fsize_w01   -2.044109     .13061   -15.65   0.000    -2.300159   -1.788058
tang_w01   -4.856372   .6371705    -7.62   0.000    -6.105495    -3.60725
prof2_w01    -23.1196   1.482164   -15.60   0.000    -26.02527   -20.21394
LnRnD_w01      22.105   1.338913    16.51   0.000     19.48017    24.72984
capex_w01    15.53585   2.653995     5.85   0.000      10.3329     20.7388
abne_w01    1.614974   .6722279     2.40   0.016     .2971238    2.932824
indlev_w01     -4.6235   .6954019    -6.65   0.000    -5.986781   -3.260219
            
fyear
1963     -2.70082   1.855219    -1.46   0.146    -6.337831    .9361915
1964     -4.36412    2.44979    -1.78   0.075    -9.166741    .4385007
1965    -3.483502   2.541331    -1.37   0.171    -8.465583    1.498578
1966    -2.861024   2.190433    -1.31   0.192    -7.155195    1.433147
1967    -3.777086   2.748357    -1.37   0.169    -9.165025    1.610852
1968    -1.183331   3.818591    -0.31   0.757    -8.669378    6.302716
1969    -4.279388   2.535129    -1.69   0.091     -9.24931    .6905337
1970    -2.396924   1.959319    -1.22   0.221    -6.238015    1.444168
1971    -5.224563   2.179666    -2.40   0.017    -9.497626      -.9515
1972    -5.423982   2.626562    -2.07   0.039    -10.57315   -.2748138
1973    -3.160456   2.739316    -1.15   0.249    -8.530669    2.209758
1974    -1.109184   2.648728    -0.42   0.675    -6.301808    4.083439
1975    -1.772796    2.62446    -0.68   0.499    -6.917842    3.372251
1976    -1.968919   2.604779    -0.76   0.450    -7.075383    3.137546
1977    -3.536893   2.602726    -1.36   0.174    -8.639332    1.565547
1978    -3.240465   2.626672    -1.23   0.217    -8.389849     1.90892
1979     -3.14485   2.587022    -1.22   0.224    -8.216504    1.926803
1980    -3.663743   2.586793    -1.42   0.157    -8.734947    1.407461
1981    -4.014471    2.67717    -1.50   0.134    -9.262852     1.23391
1982    -4.120776   2.651059    -1.55   0.120    -9.317968    1.076416
1983    -5.077192   2.616589    -1.94   0.052    -10.20681    .0524262
1984    -1.935351   2.664314    -0.73   0.468    -7.158529    3.287827
1985     -2.99127   2.628142    -1.14   0.255    -8.143537    2.160997
1986    -1.640733   2.643156    -0.62   0.535    -6.822432    3.540965
1987    -1.961486   2.624165    -0.75   0.455    -7.105956    3.182984
1988      -2.4146   2.619251    -0.92   0.357    -7.549435    2.720235
1989     -2.59247   2.617404    -0.99   0.322    -7.723685    2.538745
1990    -1.634035   2.621029    -0.62   0.533    -6.772357    3.504287
1991    -2.309193   2.621048    -0.88   0.378    -7.447551    2.829166
1992    -2.145213   2.631998    -0.82   0.415    -7.305038    3.014611
1993    -4.298855   2.602566    -1.65   0.099    -9.400981    .8032715
1994    -3.740801   2.596153    -1.44   0.150    -8.830355    1.348752
1995     -2.85765   2.593843    -1.10   0.271    -7.942675    2.227376
1996    -2.550483   2.595195    -0.98   0.326    -7.638159    2.537193
1997    -2.886435   2.598277    -1.11   0.267    -7.980153    2.207284
1998    -.6481403   2.612095    -0.25   0.804    -5.768947    4.472667
1999    -1.143714   2.627518    -0.44   0.663    -6.294757    4.007328
2000     2.853986   2.648816     1.08   0.281     -2.33881    8.046782
2001     1.088894   2.631785     0.41   0.679    -4.070513    6.248301
2002     .4298029   2.626765     0.16   0.870    -4.719764     5.57937
2003    -3.096295   2.617106    -1.18   0.237    -8.226926    2.034336
2004    -1.838908   2.626983    -0.70   0.484    -6.988901    3.311085
2005    -2.909433   2.629826    -1.11   0.269       -8.065    2.246134
2006    -1.747426   2.633339    -0.66   0.507     -6.90988    3.415028
2007    -2.096727   2.643802    -0.79   0.428    -7.279694    3.086239
2008     1.854633    2.66005     0.70   0.486    -3.360186    7.069451
2009     2.525076   2.653766     0.95   0.341    -2.677423    7.727576
2010     2.350179   2.672366     0.88   0.379    -2.888786    7.589143
2011     1.023631   2.682469     0.38   0.703    -4.235139    6.282401
2012      .217227   2.656954     0.08   0.935    -4.991522    5.425976
2013    -3.136067   2.644907    -1.19   0.236    -8.321199    2.049064
2014     -.691762   2.678946    -0.26   0.796    -5.943625    4.560101
2015     .3019233   2.697211     0.11   0.911    -4.985747    5.589594
2016     .1598025   2.719114     0.06   0.953    -5.170807    5.490412
            
_cons     24.0461   2.597978     9.26   0.000     18.95297    29.13923
and check the variable inflation factor
Code:
.    vif

    Variable    VIF    1/VIF    
            
    vc    1.34    0.746548
    pe    1.17    0.856759
    MB2_w01    1.27    0.787382
    fsize_w01    1.79    0.557760
    tang_w01    1.46    0.683080
    prof2_w01    2.01    0.497613
    LnRnD_w01    1.82    0.548491
    capex_w01    1.45    0.691691
    abne_w01    1.07    0.930430
    indlev_w01    1.65    0.606256
    fyear    
    1963    2.11    0.473790
    1964    2.33    0.428682
    1965    2.89    0.346256
    1966    3.33    0.300107
    1967    4.11    0.243356
    1968    4.22    0.236961
    1969    4.55    0.219642
    1970    5.00    0.200127
    1971    5.44    0.183805
    1972    6.55    0.152660
    1973    22.83    0.043792
    1974    33.10    0.030214
    1975    34.71    0.028808
    1976    34.05    0.029371
    1977    35.25    0.028365
    1978    34.82    0.028723
    1979    36.90    0.027101
    1980    38.31    0.026101
    1981    41.38    0.024169
    1982    52.71    0.018970
    1983    57.15    0.017497
    1984    77.92    0.012834
    1985    85.74    0.011663
    1986    90.22    0.011083
    1987    103.02    0.009707
    1988    110.87    0.009020
    1989    105.88    0.009445
    1990    103.77    0.009637
    1991    101.83    0.009821
    1992    108.93    0.009180
    1993    127.18    0.007863
    1994    143.60    0.006964
    1995    156.90    0.006373
    1996    172.69    0.005791
    1997    191.50    0.005222
    1998    187.52    0.005333
    1999    172.17    0.005808
    2000    168.06    0.005950
    2001    166.50    0.006006
    2002    154.39    0.006477
    2003    140.76    0.007104
    2004    132.61    0.007541
    2005    130.84    0.007643
    2006    126.53    0.007903
    2007    122.74    0.008147
    2008    118.64    0.008429
    2009    111.12    0.008999
    2010    106.88    0.009356
    2011    105.61    0.009469
    2012    104.55    0.009565
    2013    103.71    0.009643
    2014    108.16    0.009246
    2015    110.81    0.009025
    2016    109.64    0.009120
            
    Mean VIF    72.47
The results after I exclude year fixed effects
Code:
reg s_oina_v1_w01 vc pe $CONTROLSF if nomiss==1, cluster(gvkey_n)

Linear regression                               Number of obs     =     42,240
F(10, 5187)       =     326.72
Prob > F          =     0.0000
R-squared         =     0.3497
Root MSE          =     23.479

(Std. Err. adjusted for 5,188 clusters in gvkey_n)

Robust
s_oina_v1~01       Coef.   Std. Err.      t    P>t     [95% Conf. Interval]

vc    2.786415   .5083468     5.48   0.000     1.789841    3.782989
pe   -.4794882    .399109    -1.20   0.230     -1.26191    .3029337
MB2_w01    2.578851   .1551001    16.63   0.000     2.274789    2.882912
fsize_w01   -1.711538   .1023789   -16.72   0.000    -1.912244   -1.510832
tang_w01   -4.678255   .6267758    -7.46   0.000       -5.907    -3.44951
prof2_w01   -24.49453   1.459964   -16.78   0.000    -27.35667   -21.63238
LnRnD_w01    22.10426   1.336092    16.54   0.000     19.48495    24.72356
capex_w01    11.85221   2.584446     4.59   0.000     6.785603    16.91881
abne_w01    1.551582   .6725154     2.31   0.021     .2331683    2.869995
indlev_w01   -4.388744     .61205    -7.17   0.000     -5.58862   -3.188868
_cons    21.09565    .791491    26.65   0.000       19.544    22.64731
Code:
Variable    VIF    1/VIF     
        
prof2_w01    1.88    0.531979
LnRnD_w01    1.80    0.554424
tang_w01    1.42    0.704543
indlev_w01    1.35    0.738034
vc    1.33    0.751402
capex_w01    1.33    0.752730
MB2_w01    1.25    0.799959
fsize_w01    1.23    0.815327
pe    1.15    0.868929
abne_w01    1.07    0.937740
        
Mean VIF    1.38
P.s: I don't know why the tables look like that. Is there any way to re-align them?

Regards,
Huyen