I have run a regression of cash flow volatility (s_oina_v1_w01) on several independent variables. The coefficients of the independent variables are much greater than 1. After a while searching for the reasons, this issue might be caused by multicollinearity. I use vif command to check and found that if I exclude year fixed effect, the vif will decrease to normal. However, the betas of independent variables are still greater than 1. The question is: can betas be greater than 1 or they should be bounded between 0 and 1?
My first model including year fixed effects
Code:
reg s_oina_v1_w01 vc pe $CONTROLSF i.fyear if nomiss==1, cluster (gvkey_n) Linear regression Number of obs = 42,240 F(64, 5187) = 55.64 Prob > F = 0.0000 R-squared = 0.3537 Root MSE = 23.421 (Std. Err. adjusted for 5,188 clusters in gvkey_n) Robust s_oina_v1~01 Coef. Std. Err. t P>t [95% Conf. Interval] vc 2.60776 .5108771 5.10 0.000 1.606225 3.609294 pe -.431211 .4109789 -1.05 0.294 -1.236903 .3744809 MB2_w01 2.588564 .1564188 16.55 0.000 2.281917 2.89521 fsize_w01 -2.044109 .13061 -15.65 0.000 -2.300159 -1.788058 tang_w01 -4.856372 .6371705 -7.62 0.000 -6.105495 -3.60725 prof2_w01 -23.1196 1.482164 -15.60 0.000 -26.02527 -20.21394 LnRnD_w01 22.105 1.338913 16.51 0.000 19.48017 24.72984 capex_w01 15.53585 2.653995 5.85 0.000 10.3329 20.7388 abne_w01 1.614974 .6722279 2.40 0.016 .2971238 2.932824 indlev_w01 -4.6235 .6954019 -6.65 0.000 -5.986781 -3.260219 fyear 1963 -2.70082 1.855219 -1.46 0.146 -6.337831 .9361915 1964 -4.36412 2.44979 -1.78 0.075 -9.166741 .4385007 1965 -3.483502 2.541331 -1.37 0.171 -8.465583 1.498578 1966 -2.861024 2.190433 -1.31 0.192 -7.155195 1.433147 1967 -3.777086 2.748357 -1.37 0.169 -9.165025 1.610852 1968 -1.183331 3.818591 -0.31 0.757 -8.669378 6.302716 1969 -4.279388 2.535129 -1.69 0.091 -9.24931 .6905337 1970 -2.396924 1.959319 -1.22 0.221 -6.238015 1.444168 1971 -5.224563 2.179666 -2.40 0.017 -9.497626 -.9515 1972 -5.423982 2.626562 -2.07 0.039 -10.57315 -.2748138 1973 -3.160456 2.739316 -1.15 0.249 -8.530669 2.209758 1974 -1.109184 2.648728 -0.42 0.675 -6.301808 4.083439 1975 -1.772796 2.62446 -0.68 0.499 -6.917842 3.372251 1976 -1.968919 2.604779 -0.76 0.450 -7.075383 3.137546 1977 -3.536893 2.602726 -1.36 0.174 -8.639332 1.565547 1978 -3.240465 2.626672 -1.23 0.217 -8.389849 1.90892 1979 -3.14485 2.587022 -1.22 0.224 -8.216504 1.926803 1980 -3.663743 2.586793 -1.42 0.157 -8.734947 1.407461 1981 -4.014471 2.67717 -1.50 0.134 -9.262852 1.23391 1982 -4.120776 2.651059 -1.55 0.120 -9.317968 1.076416 1983 -5.077192 2.616589 -1.94 0.052 -10.20681 .0524262 1984 -1.935351 2.664314 -0.73 0.468 -7.158529 3.287827 1985 -2.99127 2.628142 -1.14 0.255 -8.143537 2.160997 1986 -1.640733 2.643156 -0.62 0.535 -6.822432 3.540965 1987 -1.961486 2.624165 -0.75 0.455 -7.105956 3.182984 1988 -2.4146 2.619251 -0.92 0.357 -7.549435 2.720235 1989 -2.59247 2.617404 -0.99 0.322 -7.723685 2.538745 1990 -1.634035 2.621029 -0.62 0.533 -6.772357 3.504287 1991 -2.309193 2.621048 -0.88 0.378 -7.447551 2.829166 1992 -2.145213 2.631998 -0.82 0.415 -7.305038 3.014611 1993 -4.298855 2.602566 -1.65 0.099 -9.400981 .8032715 1994 -3.740801 2.596153 -1.44 0.150 -8.830355 1.348752 1995 -2.85765 2.593843 -1.10 0.271 -7.942675 2.227376 1996 -2.550483 2.595195 -0.98 0.326 -7.638159 2.537193 1997 -2.886435 2.598277 -1.11 0.267 -7.980153 2.207284 1998 -.6481403 2.612095 -0.25 0.804 -5.768947 4.472667 1999 -1.143714 2.627518 -0.44 0.663 -6.294757 4.007328 2000 2.853986 2.648816 1.08 0.281 -2.33881 8.046782 2001 1.088894 2.631785 0.41 0.679 -4.070513 6.248301 2002 .4298029 2.626765 0.16 0.870 -4.719764 5.57937 2003 -3.096295 2.617106 -1.18 0.237 -8.226926 2.034336 2004 -1.838908 2.626983 -0.70 0.484 -6.988901 3.311085 2005 -2.909433 2.629826 -1.11 0.269 -8.065 2.246134 2006 -1.747426 2.633339 -0.66 0.507 -6.90988 3.415028 2007 -2.096727 2.643802 -0.79 0.428 -7.279694 3.086239 2008 1.854633 2.66005 0.70 0.486 -3.360186 7.069451 2009 2.525076 2.653766 0.95 0.341 -2.677423 7.727576 2010 2.350179 2.672366 0.88 0.379 -2.888786 7.589143 2011 1.023631 2.682469 0.38 0.703 -4.235139 6.282401 2012 .217227 2.656954 0.08 0.935 -4.991522 5.425976 2013 -3.136067 2.644907 -1.19 0.236 -8.321199 2.049064 2014 -.691762 2.678946 -0.26 0.796 -5.943625 4.560101 2015 .3019233 2.697211 0.11 0.911 -4.985747 5.589594 2016 .1598025 2.719114 0.06 0.953 -5.170807 5.490412 _cons 24.0461 2.597978 9.26 0.000 18.95297 29.13923
Code:
. vif Variable VIF 1/VIF vc 1.34 0.746548 pe 1.17 0.856759 MB2_w01 1.27 0.787382 fsize_w01 1.79 0.557760 tang_w01 1.46 0.683080 prof2_w01 2.01 0.497613 LnRnD_w01 1.82 0.548491 capex_w01 1.45 0.691691 abne_w01 1.07 0.930430 indlev_w01 1.65 0.606256 fyear 1963 2.11 0.473790 1964 2.33 0.428682 1965 2.89 0.346256 1966 3.33 0.300107 1967 4.11 0.243356 1968 4.22 0.236961 1969 4.55 0.219642 1970 5.00 0.200127 1971 5.44 0.183805 1972 6.55 0.152660 1973 22.83 0.043792 1974 33.10 0.030214 1975 34.71 0.028808 1976 34.05 0.029371 1977 35.25 0.028365 1978 34.82 0.028723 1979 36.90 0.027101 1980 38.31 0.026101 1981 41.38 0.024169 1982 52.71 0.018970 1983 57.15 0.017497 1984 77.92 0.012834 1985 85.74 0.011663 1986 90.22 0.011083 1987 103.02 0.009707 1988 110.87 0.009020 1989 105.88 0.009445 1990 103.77 0.009637 1991 101.83 0.009821 1992 108.93 0.009180 1993 127.18 0.007863 1994 143.60 0.006964 1995 156.90 0.006373 1996 172.69 0.005791 1997 191.50 0.005222 1998 187.52 0.005333 1999 172.17 0.005808 2000 168.06 0.005950 2001 166.50 0.006006 2002 154.39 0.006477 2003 140.76 0.007104 2004 132.61 0.007541 2005 130.84 0.007643 2006 126.53 0.007903 2007 122.74 0.008147 2008 118.64 0.008429 2009 111.12 0.008999 2010 106.88 0.009356 2011 105.61 0.009469 2012 104.55 0.009565 2013 103.71 0.009643 2014 108.16 0.009246 2015 110.81 0.009025 2016 109.64 0.009120 Mean VIF 72.47
Code:
reg s_oina_v1_w01 vc pe $CONTROLSF if nomiss==1, cluster(gvkey_n) Linear regression Number of obs = 42,240 F(10, 5187) = 326.72 Prob > F = 0.0000 R-squared = 0.3497 Root MSE = 23.479 (Std. Err. adjusted for 5,188 clusters in gvkey_n) Robust s_oina_v1~01 Coef. Std. Err. t P>t [95% Conf. Interval] vc 2.786415 .5083468 5.48 0.000 1.789841 3.782989 pe -.4794882 .399109 -1.20 0.230 -1.26191 .3029337 MB2_w01 2.578851 .1551001 16.63 0.000 2.274789 2.882912 fsize_w01 -1.711538 .1023789 -16.72 0.000 -1.912244 -1.510832 tang_w01 -4.678255 .6267758 -7.46 0.000 -5.907 -3.44951 prof2_w01 -24.49453 1.459964 -16.78 0.000 -27.35667 -21.63238 LnRnD_w01 22.10426 1.336092 16.54 0.000 19.48495 24.72356 capex_w01 11.85221 2.584446 4.59 0.000 6.785603 16.91881 abne_w01 1.551582 .6725154 2.31 0.021 .2331683 2.869995 indlev_w01 -4.388744 .61205 -7.17 0.000 -5.58862 -3.188868 _cons 21.09565 .791491 26.65 0.000 19.544 22.64731
Code:
Variable VIF 1/VIF prof2_w01 1.88 0.531979 LnRnD_w01 1.80 0.554424 tang_w01 1.42 0.704543 indlev_w01 1.35 0.738034 vc 1.33 0.751402 capex_w01 1.33 0.752730 MB2_w01 1.25 0.799959 fsize_w01 1.23 0.815327 pe 1.15 0.868929 abne_w01 1.07 0.937740 Mean VIF 1.38
Regards,
Huyen
0 Response to Betas greater than one
Post a Comment