I am trying to obtain average marginal effects from a population-averaged negative binomial regression.
I ran the following:
Code:
. xtgee cnrparticipants /// > sqrt_cnrdeaths /// > pulparticipants_lagged /// > pulpop_pcent /// > pulpop_pcent_sq /// > popchange /// > popchange_squared /// > unemployment_ratio /// > cnrworker /// > hbclaimants /// > cnrdegree /// > cnrparticipants_lagged /// > electionyear_a /// > , family(nbinomial 1) exposure(cnrpop) vce(robust) /// > corr(ind) Iteration 1: tolerance = 7.528e-07 GEE population-averaged model Number of obs = 1,390 Group variable: settlementid Number of groups = 139 Link: log Obs per group: Family: negative binomial(k=1) min = 10 Correlation: independent avg = 10.0 max = 10 Wald chi2(12) = 262.93 Scale parameter: 1 Prob > chi2 = 0.0000 Pearson chi2(1390): 51831.07 Deviance = 7213.68 Dispersion (Pearson): 37.28854 Dispersion = 5.189696 (Std. Err. adjusted for clustering on settlementid) ---------------------------------------------------------------------------------------- | Semirobust cnrparticipants | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------------+---------------------------------------------------------------- sqrt_cnrdeaths | -.1507375 .0740523 -2.04 0.042 -.2958774 -.0055976 pulparticipants_lagged | .0125712 .003579 3.51 0.000 .0055564 .0195859 pulpop_pcent | -.076741 .039356 -1.95 0.051 -.1538773 .0003954 pulpop_pcent_sq | .0004652 .0004765 0.98 0.329 -.0004687 .0013991 popchange | -.1993546 .4461408 -0.45 0.655 -1.073775 .6750654 popchange_squared | -.0681788 .1272669 -0.54 0.592 -.3176174 .1812598 unemployment_ratio | 1.550292 .4837341 3.20 0.001 .6021904 2.498393 cnrworker | .0892763 .0353052 2.53 0.011 .0200794 .1584731 hbclaimants | -.0436729 .022623 -1.93 0.054 -.0880132 .0006674 cnrdegree | -.0225913 .0425565 -0.53 0.596 -.1060004 .0608179 cnrparticipants_lagged | .0533955 .0115392 4.63 0.000 .030779 .076012 electionyear_a | -.1913063 .2326139 -0.82 0.411 -.6472212 .2646085 _cons | -5.327789 1.523732 -3.50 0.000 -8.314249 -2.341329 ln(cnrpop) | 1 (exposure) ---------------------------------------------------------------------------------------- . . margins, dydx(*) post Average marginal effects Number of obs = 1,390 Model VCE : Semirobust Expression : Exponentiated linear prediction considering offset, predict() dy/dx w.r.t. : sqrt_cnrdeaths pulparticipants_lagged pulpop_pcent pulpop_pcent_sq popchange popchange_squared unemployment_ratio cnrworker hbclaimants cnrdegree cnrparticipants_lagged electionyear_a ---------------------------------------------------------------------------------------- | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -----------------------+---------------------------------------------------------------- sqrt_cnrdeaths | -2501.737 3338.087 -0.75 0.454 -9044.267 4040.793 pulparticipants_lagged | 208.6391 229.0139 0.91 0.362 -240.2199 657.4981 pulpop_pcent | -1273.642 1640.604 -0.78 0.438 -4489.167 1941.883 pulpop_pcent_sq | 7.720792 13.53815 0.57 0.568 -18.8135 34.25509 popchange | -3308.617 8823.409 -0.37 0.708 -20602.18 13984.95 popchange_squared | -1131.539 2667.132 -0.42 0.671 -6359.022 4095.944 unemployment_ratio | 25729.64 25755.41 1.00 0.318 -24750.03 76209.31 cnrworker | 1481.686 1602.212 0.92 0.355 -1658.592 4621.964 hbclaimants | -724.8237 910.6557 -0.80 0.426 -2509.676 1060.029 cnrdegree | -374.939 832.4995 -0.45 0.652 -2006.608 1256.73 cnrparticipants_lagged | 886.1862 1084.372 0.82 0.414 -1239.145 3011.517 electionyear_a | -3175.043 5522.194 -0.57 0.565 -13998.34 7648.259 ----------------------------------------------------------------------------------------
My question is, does the difference in p-values indicate that I am doing something wrong, and if so, what corrections should I make?
Thank you for any and all help provided.
Best wishes,
Adam
0 Response to Problem: margins command produces AME results with different p-values to the original xtgee family(nbinomial 1) regression
Post a Comment