Dear all,

I am writing my Master's thesis, where I am doing an FE estimation on the probability of default of a panel data set from 2008-2018. I have been made aware that it could be a good idea to include time dummies to control for any aggregate time effect (i.e. changes in the economic environment).

The variable I am interested in is the first one "WOMEN", as this is the fraction of female directors in the firms.

When I run my regression without time dummies, I get significant results, but when I include them, the results turn insignificant. (See code)


First my estimation with time dummies
Code:
. xtreg $ylist $xlist i.Time, fe vce(robust)

Fixed-effects (within) regression               Number of obs     =     76,710
Group variable: ID                              Number of groups  =     12,895

R-sq:                                           Obs per group:
     within  = 0.2433                                         min =          1
     between = 0.2360                                         avg =        5.9
     overall = 0.2757                                         max =         46

                                                F(36,12894)       =      42.19
corr(u_i, Xb)  = 0.0226                         Prob > F          =     0.0000

                                    (Std. Err. adjusted for 12,895 clusters in ID)
----------------------------------------------------------------------------------
                 |               Robust
              PD |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-----------------+----------------------------------------------------------------
           Women |  -.0011513    .001198    -0.96   0.337    -.0034996     .001197
             ROA |   -.102301   .0060319   -16.96   0.000    -.1141244   -.0904776
            MTBt |   .0001097   .0000167     6.57   0.000      .000077    .0001424
          LIQUID |  -.0002312   .0000897    -2.58   0.010    -.0004069   -.0000554
            SOLV |    .007016   .0006786    10.34   0.000     .0056859    .0083461
           RISK1 |   .0176122    .000926    19.02   0.000     .0157971    .0194274
          MktCap |  -5.00e-09   6.51e-10    -7.69   0.000    -6.28e-09   -3.73e-09
            Inde |   .0022668    .000858     2.64   0.008      .000585    .0039486
     OtherBoards |   .0001514   .0001023     1.48   0.139    -.0000491    .0003519
           Bsize |  -.0004402   .0000529    -8.33   0.000    -.0005439   -.0003366
            dGov |   .0011423   .0004785     2.39   0.017     .0002044    .0020802
          dAudit |   .0000593   .0002138     0.28   0.782    -.0003599    .0004784
           dComp |    .000157   .0001896     0.83   0.408    -.0002146    .0005286
            dNom |  -.0012808    .000506    -2.53   0.011    -.0022726   -.0002889
         InstOwn |  -.0212428   .0022082    -9.62   0.000    -.0255713   -.0169144
             FCF |  -3.85e-08   9.35e-09    -4.12   0.000    -5.68e-08   -2.02e-08
         dEnergy |  -.0017655   .0007583    -2.33   0.020    -.0032519   -.0002792
      dMaterials |   -.000624   .0005299    -1.18   0.239    -.0016627    .0004146
   dConsumerDisc |   .0023597   .0005535     4.26   0.000     .0012748    .0034447
    dConsumerSta |   .0001703   .0007431     0.23   0.819    -.0012863    .0016268
     dHealthCare |   .0027769   .0007045     3.94   0.000      .001396    .0041578
     dFinancials |  -.0004171   .0037388    -0.11   0.911    -.0077456    .0069114
dInformationTech |   .0030258   .0007783     3.89   0.000     .0015002    .0045514
          dComms |   .0002314   .0009373     0.25   0.805    -.0016059    .0020686
      dUtilities |  -.0050889   .0007094    -7.17   0.000    -.0064794   -.0036985
     dRealEstate |  -.0060983   .0020713    -2.94   0.003    -.0101584   -.0020381
                 |
            Time |
              2  |  -.0041194   .0003411   -12.08   0.000     -.004788   -.0034509
              3  |  -.0039076    .000284   -13.76   0.000    -.0044642    -.003351
              4  |  -.0017163   .0001891    -9.08   0.000     -.002087   -.0013457
              5  |  -.0023712   .0002102   -11.28   0.000    -.0027832   -.0019593
              6  |  -.0010996   .0001915    -5.74   0.000     -.001475   -.0007242
              7  |  -.0013153   .0002051    -6.41   0.000    -.0017172   -.0009133
              8  |   -.001092   .0002049    -5.33   0.000    -.0014935   -.0006904
              9  |  -.0015867    .000247    -6.42   0.000    -.0020708   -.0011026
             10  |  -.0032568   .0002524   -12.90   0.000    -.0037515    -.002762
             11  |   -.001924   .0002559    -7.52   0.000    -.0024257   -.0014223
                 |
           _cons |   .0269272   .0023039    11.69   0.000     .0224112    .0314433
-----------------+----------------------------------------------------------------
         sigma_u |  .01838454
         sigma_e |  .00901617
             rho |  .80611808   (fraction of variance due to u_i)
----------------------------------------------------------------------------------
Then my model without time dummies

Code:
 . xtreg $ylist $xlist , fe vce(robust)

Fixed-effects (within) regression               Number of obs     =     76,710
Group variable: ID                              Number of groups  =     12,895

R-sq:                                           Obs per group:
     within  = 0.2338                                         min =          1
     between = 0.2244                                         avg =        5.9
     overall = 0.2638                                         max =         46

                                                F(26,12894)       =      52.71
corr(u_i, Xb)  = 0.0224                         Prob > F          =     0.0000

                                    (Std. Err. adjusted for 12,895 clusters in ID)
----------------------------------------------------------------------------------
                 |               Robust
              PD |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-----------------+----------------------------------------------------------------
           Women |  -.0021433   .0010889    -1.97   0.049    -.0042777   -8.82e-06
             ROA |  -.1033834   .0059445   -17.39   0.000    -.1150355   -.0917312
            MTBt |   .0001104   .0000167     6.63   0.000     .0000777    .0001431
          LIQUID |  -.0002607   .0000901    -2.89   0.004    -.0004373   -.0000842
            SOLV |   .0068866   .0006663    10.34   0.000     .0055805    .0081926
           RISK1 |    .012754   .0005728    22.27   0.000     .0116312    .0138768
          MktCap |  -5.18e-09   6.75e-10    -7.68   0.000    -6.51e-09   -3.86e-09
            Inde |   .0017683   .0008672     2.04   0.041     .0000684    .0034682
     OtherBoards |   .0001932   .0001038     1.86   0.063    -.0000103    .0003966
           Bsize |  -.0004775    .000053    -9.01   0.000    -.0005814   -.0003736
            dGov |   .0012372   .0005022     2.46   0.014     .0002527    .0022217
          dAudit |  -1.80e-06   .0002154    -0.01   0.993    -.0004241    .0004205
           dComp |   .0000934   .0001928     0.48   0.628    -.0002845    .0004712
            dNom |  -.0014574   .0005306    -2.75   0.006    -.0024975   -.0004174
         InstOwn |  -.0213736   .0022335    -9.57   0.000    -.0257516   -.0169956
             FCF |  -4.17e-08   9.68e-09    -4.31   0.000    -6.06e-08   -2.27e-08
         dEnergy |    -.00168   .0007594    -2.21   0.027    -.0031685   -.0001915
      dMaterials |  -.0005221   .0005387    -0.97   0.332     -.001578    .0005337
   dConsumerDisc |   .0025209    .000564     4.47   0.000     .0014154    .0036265
    dConsumerSta |  -.0001026   .0007424    -0.14   0.890    -.0015579    .0013527
     dHealthCare |   .0026983   .0007112     3.79   0.000     .0013042    .0040924
     dFinancials |  -.0000391    .003853    -0.01   0.992    -.0075915    .0075133
dInformationTech |   .0030545   .0007851     3.89   0.000     .0015156    .0045933
          dComms |   .0003357   .0009567     0.35   0.726    -.0015396     .002211
      dUtilities |  -.0057208   .0007085    -8.07   0.000    -.0071095    -.004332
     dRealEstate |  -.0062761   .0021122    -2.97   0.003    -.0104163    -.002136
           _cons |   .0278123   .0023418    11.88   0.000      .023222    .0324026
-----------------+----------------------------------------------------------------
         sigma_u |  .01851273
         sigma_e |  .00907152
             rho |  .80637699   (fraction of variance due to u_i)
----------------------------------------------------------------------------------
I have also tested using timeparm if the time dummies are significantly different:

Code:
  testparm i.Time

 ( 1)  2.Time = 0
 ( 2)  3.Time = 0
 ( 3)  4.Time = 0
 ( 4)  5.Time = 0
 ( 5)  6.Time = 0
 ( 6)  7.Time = 0
 ( 7)  8.Time = 0
 ( 8)  9.Time = 0
 ( 9)  10.Time = 0
 (10)  11.Time = 0

       F( 10, 12894) =   38.22
            Prob > F =    0.0000

What are your experiences with time dummies in panel data? Should they be included or not?

Thanks in advance