I'im running regression on count data with 4 fixed effects.
Because I include 4 fixed effects it is not possible to use a simple poisson of nbreg (i set matsize at max and set emptycells drop). I used the the reghfde package by Sergio Correia which includes ppmlhdfe, a poisson regression with multiple fixed effects. However, I think my count data is overdispersed and should use a nbreg but there is no such thing in the reghdfe package.
1) Is there a test to run after ppmlhdfe to check for overdispersion?
2) or is there any alternative to run a nbreg with multiple fixed effects?
I ran the following code with results:
Code:
. ppmlhdfe teamsize internetdummy invt_network_size invt_pat_count invt_career_age mobile_invt , vce(robust) absorb(cbsacode appyear uspc invt_id) d (dropped 99460 observations that are either singletons or separated by a fixed effect) note: 1 variable omitted because of collinearity: invt_career_age Iteration 1: deviance = 1.454e+05 itol = 1.0e-04 subiters = 30 min(eta) = > -1.28 > [p ] Iteration 2: deviance = 1.407e+05 eps = 3.39e-02 itol = 1.0e-04 subiters = 19 min(eta) = > -1.94 > [ ] Iteration 3: deviance = 1.406e+05 eps = 1.91e-04 itol = 1.0e-04 subiters = 10 min(eta) = > -2.03 > [ ] Iteration 4: deviance = 1.406e+05 eps = 1.43e-07 itol = 1.0e-04 subiters = 3 min(eta) = > -2.03 > [ ] Iteration 5: deviance = 1.406e+05 eps = 1.72e-07 itol = 1.0e-08 subiters = 62 min(eta) = > -2.02 > [ s ] Iteration 6: deviance = 1.406e+05 eps = 7.80e-11 itol = 1.0e-08 subiters = 95 min(eta) = > -2.02 > [ps ] Iteration 7: deviance = 1.406e+05 eps = 2.10e-14 itol = 1.0e-10 subiters = 116 min(eta) = > -2.02 > [pso] Iteration 8: deviance = 1.406e+05 eps = 2.39e-14 itol = 1.0e-10 subiters = 117 min(eta) = > -2.02 > [pso] ------------------------------------------------------------------------------------------------ > ------------ (legend: p: exact partial-out s: exact solver o: epsilon below tolerance) Converged in 8 iterations and 452 HDFE sub-iterations (tol = 1.0e-08) HDFE PPML regression No. of obs = 362,605 Absorbing 4 HDFE groups Residual df = 280,588 Wald chi2(4) = 1354.34 Deviance = 140641.425 Prob > chi2 = 0.0000 Log pseudolikelihood = -564388.4936 Pseudo R2 = 0.1827 ----------------------------------------------------------------------------------- | Robust teamsize | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------+---------------------------------------------------------------- internetdummy | -.0025327 .0053141 -0.48 0.634 -.0129481 .0078827 invt_network_size | .0122162 .0003325 36.74 0.000 .0115645 .012868 invt_pat_count | -.001211 .0000895 -13.53 0.000 -.0013864 -.0010355 invt_career_age | 0 (omitted) mobile_invt | -.0057639 .0086128 -0.67 0.503 -.0226447 .011117 _cons | .9506205 .0060948 155.97 0.000 .9386748 .9625661 ----------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| cbsacode | 481 0 481 | appyear | 6 1 5 | uspc | 412 1 411 ?| invt_id | 81188 72 81116 ?| -----------------------------------------------------+ ? = number of redundant parameters may be higher
Any suggestions?
Thanks
Ludo
0 Response to Is there an nbreg alternative for ppmlhdf ? (presence of overdisperion)
Post a Comment