Dear Statalists,
I would like to delete rows where are only 7 real values and the rest is NA, does anyone know how to do it? Will really appreciate the assistance. Below you will find the part of my whole dataset.
* Example generated by -dataex-. To install: ssc install dataex
clear
input str9 Market str10(var6 var7 var8 var9 var10 var11 var12 var13 var14 var16 var17 var18 var19 var20 var21 var22 var23)
"Argentina" "24" "24,71" "27,44" "24,62" "25,95" "28,2" "26,7" "NA" "24,81" "23,74" "25,33" "26" "25,15" "24,1" "22,92" "NA" "20,15"
"Argentina" "NA" "NA" "NA" "7,88" "NA" "14,05" "12,1" "NA" "9,43" "8,36" "8,64" "9,37" "8,85" "8,12" "8,23" "NA" "4,07"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "0,06" "0,08" "0,08" "0,08" "0,07" "0,07" "NA" "NA" "0,09" "0,12" "0,15" "0,18" "NA" "0,26" "0,27" "NA" "0,24"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "4,38" "4,98" "5,54" "5,76" "7,45" "8,55" "6,85" "NA" "5,2" "4,4" "5,16" "6,24" "5,84" "4,98" "5,1" "NA" "3,16"
"Argentina" "NA" "NA" "NA" "0,69" "NA" "1,09" "0,88" "NA" "0,94" "0,79" "0,78" "0,92" "0,89" "0,83" "0,73" "NA" "0,49"
"Argentina" "3,81" "4,08" "4,48" "4,69" "6,29" "7,2" "6,4" "NA" "5,48" "5,19" "6,34" "7,3" "6,68" "6,08" "5,6" "NA" "4,68"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "1,67"
"Argentina" "0,05" "0,06" "NA" "0,05" "0,07" "0,07" "NA" "NA" "NA" "NA" "NA" "0,05" "0,06" "NA" "NA" "0,04" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "NA" "NA" "0" "NA" "0" "0" "0" "0" "0" "0" "0" "0" "0" "0" "0" "0" "0"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "2,53" "NA" "2,48" "2,48" "2,45" "2,19" "NA" "1,79"
"Argentina" "NA" "0,03" "0,04" "NA" "0,05" "0,05" "NA" "NA" "0,05" "0,05" "NA" "0,05" "0,06" "NA" "NA" "0,05" "NA"
"Argentina" "0,26" "0,26" "0,27" "0,24" "0,21" "0,29" "0,23" "NA" "0,21" "NA" "0,34" "0,61" "1" "1,35" "1,08" "NA" "0,83"
"Argentina" "0,06" "NA" "NA" "NA" "0,06" "NA" "NA" "NA" "NA" "NA" "NA" "0,09" "0,1" "0,1" "0,1" "0,1" "0,09"
"Argentina" "1,6" "1,84" "1,31" "1,08" "1,04" "1,42" "1,61" "NA" "1,3" "1,27" "1,23" "1,18" "1,54" "1,67" "1,45" "NA" "1,65"
"Argentina" "58,05" "67,97" "69,05" "60,27" "82,33" "130,9" "159,99" "NA" "98,21" "93,25" "103,38" "98,18" "90,89" "NA" "60,39" "54,53" "NA"
"Argentina" "0,65" "NA" "0,75" "NA" "0,69" "NA" "0,87" "NA" "NA" "0,63" "NA" "NA" "1,43" "NA" "1,38" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "0,38" "0,37" "NA" "0,35" "0,48" "0,51" "0,51" "NA" "NA" "0,46" "NA" "NA" "0,35" "NA" "NA" "0,37" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "2,76" "2,76" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "3,1" "2,76" "NA" "2,53" "2,64" "2,65" "3,24" "3,07" "2,95" "2,63" "NA" "2,2"
"Argentina" "0,05" "NA" "0,08" "0,06" "0,1" "0,14" "0,12" "NA" "0,15" "0,15" "0,15" "0,13" "0,15" "0,16" "0,14" "0,13" "NA"
"Argentina" "0,25" "0,33" "0,45" "0,47" "0,55" "0,76" "0,84" "NA" "0,73" "0,89" "0,94" "0,94" "0,89" "0,85" "0,87" "0,74" "NA"
"Argentina" "1,4" "NA" "NA" "NA" "1,5" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "1,25" "NA" "NA" "1,38" "NA"
"Argentina" "1,35" "1,22" "0,92" "0,71" "0,79" "1,06" "1,28" "NA" "1,51" "1,45" "1,32" "1,65" "2,23" "2,63" "2,83" "NA" "4,48"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "0,84" "0,9" "NA" "NA" "1,2" "1,63" "NA" "NA" "1,45" "1,53" "NA" "1,59" "1,96" "1,84" "1,59" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "0,97" "1,77" "1,85" "1,51" "1,84" "2,32" "2,24" "NA" "2,17" "2,29" "2,52" "2,67" "2,87" "2,76" "2,43" "NA" "1,71"
"Argentina" "NA" "0,11" "NA" "0,11" "0,1" "0,11" "NA" "0,1" "0,1" "0,09" "0,11" "0,11" "0,18" "0,18" "0,18" "0,13" "0,14"
"Argentina" "0,08" "0,08" "NA" "NA" "0,14" "0,2" "0,17" "NA" "0,19" "0,18" "0,18" "0,2" "0,2" "0,2" "NA" "0,23" "NA"
"Argentina" "1,53" "1,94" "2,16" "2,24" "3,02" "3,3" "3,01" "2,85" "2,73" "2,81" "2,73" "2,95" "2,73" "2,68" "2,41" "2,26" "1,76"
"Argentina" "0,53" "0,54" "0,59" "0,59" "0,76" "0,96" "1,04" "NA" "0,99" "1,02" "0,99" "1,02" "1,05" "1,05" "0,99" "0,85" "0,84"
"Argentina" "0,1" "0,12" "0,13" "0,12" "0,17" "0,23" "0,18" "NA" "0,19" "0,22" "0,2" "0,22" "0,25" "NA" "0,2" "NA" "0,16"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "1,05" "NA" "0,79"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "0,16" "0,16" "0,17" "0,16" "0,16" "0,17" "NA" "NA" "0,13" "NA" "NA" "0,13" "0,17" "0,2" "NA" "NA" "NA"
"Argentina" "1,38" "1,68" "1,99" "1,96" "2,26" "2,62" "2,19" "NA" "2,17" "2,31" "2,15" "2,39" "2,42" "2,23" "1,76" "1,42" "1,36"
"Argentina" "1,04" "1,03" "1,04" "0,93" "1,17" "1,79" "NA" "NA" "1,25" "NA" "1,79" "1,71" "1,71" "NA" "1,38" "NA" "0,99"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "25,27" "32,15" "30,17" "26,26" "35,13" "52,59" "58,44" "NA" "48,71" "43,42" "41,93" "39,15" "40,51" "41,1" "35,08" "NA" "23,37"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "NA" "0,14" "0,15" "NA" "0,16" "0,19" "0,18" "NA" "NA" "NA" "0,15" "0,15" "0,15" "NA" "0,15" "0,14" "NA"
"Argentina" "NA" "NA" "0,07" "NA" "0,08" "0,11" "0,1" "NA" "0,11" "NA" "0,09" "NA" "0,09" "NA" "0,09" "0,09" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "0,99" "1,11" "1,3" "1,33" "1,42" "1,65" "1,46" "NA" "1,11" "1,15" "1,24" "1,47" "1,41" "1,36" "1,19" "NA" "1,1"
"Argentina" "1,31" "1,07" "0,53" "0,62" "0,73" "1,11" "0,99" "NA" "0,83" "0,96" "0,97" "1,12" "1,5" "1,5" "1,29" "1,18" "1,18"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "1,82" "NA" "NA" "NA" "NA" "1,54" "NA" "NA" "NA" "1,65" "NA" "NA" "2"
"Argentina" "1,34" "1,51" "1,54" "0,97" "1,04" "1,16" "1,31" "NA" "1,05" "1,08" "0,92" "0,9" "1,06" "1,09" "0,97" "0,89" "0,84"
"Argentina" "93,98" "89,63" "94,81" "91,77" "116,61" "129,18" "154,74" "NA" "111,72" "97,72" "91,33" "99,58" "103,99" "102,94" "87,51" "NA" "85,02"
"Argentina" "4,27" "4,31" "3,89" "3,64" "NA" "5,62" "4,44" "NA" "NA" "NA" "4,74" "NA" "4,73" "4,6" "4,3" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "18536,34" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "1,53" "1,56" "1,73" "1,46" "1,66" "2,02" "1,77" "NA" "1,65" "1,45" "1,47" "1,6" "1,65" "1,54" "1,42" "NA" "1,07"
"Argentina" "0,35" "0,3" "NA" "0,23" "0,28" "0,41" "0,45" "NA" "0,49" "0,66" "0,65" "0,81" "0,99" "1,11" "1,24" "1,17" "1,24"
"Argentina" "2,53" "2,61" "2,62" "2,42" "2,92" "3,77" "3,27" "NA" "3,03" "2,92" "2,92" "3,09" "3,03" "3,15" "3,15" "2,76" "2,28"
"Argentina" "2,86" "3,22" "3,38" "3,74" "4,74" "5,11" "4,5" "NA" "3,68" "3,12" "3,63" "3,78" "3,68" "3,17" "3,2" "NA" "1,95"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "1,9" "2,14" "NA" "NA" "2,03" "2,86" "2,3" "NA" "1,84" "NA" "NA" "1,53" "1,68" "1,7" "1,55" "NA" "NA"
"Argentina" "2,65" "2,83" "3,7" "3,4" "4,16" "4,95" "4,2" "NA" "4,3" "NA" "NA" "3,3" "NA" "NA" "NA" "NA" "NA"
"Argentina" "0,75" "NA" "0,62" "NA" "0,65" "NA" "0,73" "NA" "NA" "1,37" "1,4" "1,65" "1,65" "NA" "1,55" "1,4" "NA"
"Argentina" "1,88" "1,91" "2,25" "NA" "1,56" "1,8" "1,72" "NA" "NA" "NA" "NA" "1,83" "1,65" "NA" "1,55" "NA" "NA"
"Argentina" "0,82" "1,16" "NA" "NA" "1,1" "1,99" "2,4" "NA" "1,95" "1,85" "1,84" "1,85" "2,26" "NA" "2,47" "2,15" "NA"
"Argentina" "NA" "NA" "NA" "NA" "5,01" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "5" "NA" "NA" "5" "NA"
"Argentina" "2,03" "2,32" "2,37" "2,12" "NA" "3,45" "2,98" "NA" "1,97" "NA" "1,83" "2,1" "NA" "2,03" "1,96" "NA" "1,42"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "3,63" "NA" "NA" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "3,59" "2,98" "NA" "NA" "NA" "6" "5,75" "NA" "5,8" "NA" "NA" "5,9" "6,2" "6,5" "NA" "NA" "NA"
"Argentina" "NA" "1,74" "NA" "1,26" "1,53" "1,92" "NA" "NA" "2,26" "2,4" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "0,71" "1,02" "NA" "0,83" "1,1" "1,48" "NA" "NA" "NA" "NA" "NA" "1,1" "NA" "1,55" "1,28" "NA" "NA"
"Argentina" "1,7" "1,48" "NA" "0,81" "1,02" "1,5" "1,21" "1,15" "1,21" "NA" "NA" "1,11" "1,79" "NA" "NA" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "0,84" "0,68" "NA" "NA" "0,25" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "0,26" "NA" "NA" "0,26" "NA"
"Argentina" "NA" "NA" "20890,16" "NA" "20941,05" "NA" "20902,8" "NA" "20909,67" "NA" "20925,87" "NA" "20898,67" "NA" "NA" "20898,66" "NA"
"Argentina" "2,97" "2,95" "3,92" "3,37" "4,53" "5,94" "6,08" "NA" "6,01" "NA" "5,61" "5,4" "5,27" "5,03" "NA" "4,66" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "50" "NA" "NA" "NA" "NA"
"Argentina" "NA" "NA" "NA" "NA" "2,53" "2,43" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "0,41" "NA" "NA" "0,42" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "0,36" "NA" "NA" "NA" "NA"
"Argentina" "0,38" "0,4" "0,52" "0,46" "0,55" "0,72" "0,94" "0,93" "0,84" "0,7" "0,64" "0,65" "0,75" "0,76" "0,64" "0,5" "0,4"
"Argentina" "19,45" "27,25" "24,23" "20,68" "28,07" "38,99" "53,61" "NA" "52,41" "36,61" "37,2" "35,94" "48,85" "54,22" "55,46" "31,67" "32,28"
"Argentina" "1,6" "1,34" "1,19" "0,75" "0,85" "1,28" "1,53" "1,39" "1,58" "1,64" "1,71" "2,04" "2,6" "3,2" "3,55" "NA" "4,78"
"Argentina" "NA" "3,58" "3,6" "3,6" "3,61" "3,6" "3,6" "3,6" "3,6" "3,61" "3" "3" "3" "3" "3" "2,5" "2,5"
"Argentina" "4,79" "5,57" "NA" "6,24" "8,02" "8,5" "8" "NA" "NA" "6,61" "NA" "7" "6,5" "6,5" "5,75" "NA" "4,5"
"Argentina" "0,8" "0,68" "NA" "NA" "0,68" "0,47" "0,65" "0,84" "0,74" "1,03" "1,03" "1,1" "1,52" "1,43" "1,3" "1,08" "1"
"Argentina" "0,65" "0,68" "0,54" "NA" "0,59" "0,86" "0,78" "NA" "NA" "1" "NA" "NA" "1,26" "1,35" "1,3" "NA" "NA"
"Argentina" "4,32" "4,28" "4,25" "3,65" "3,81" "5,6" "4,8" "NA" "4,45" "4,63" "4,41" "4,65" "4,9" "4,85" "4,95" "NA" "3,52"
"Argentina" "NA" "NA" "NA" "NA" "0,35" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "0,3" "0,6" "NA" "0,6" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "1,03"
"Argentina" "NA" "NA" "NA" "NA" "15,33" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "7,08" "NA" "7,3" "9" "NA"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
"Argentina" "3,27" "3,06" "3,17" "NA" "2,78" "3,37" "NA" "NA" "2,08" "NA" "NA" "1,61" "1,94" "2,98" "2,07" "1,79" "NA"
"Argentina" "1,32" "1,46" "1,66" "1,52" "1,68" "1,95" "1,93" "NA" "1,68" "1,6" "1,68" "1,9" "1,91" "1,82" "1,63" "NA" "1,46"
"Argentina" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA"
end
[/CODE]
Related Posts with Deleting rows with NAs
Replace with value from another observation?Hi Statalist! I am so please to be on board this great list that I have often used with great pleas…
Difference-in- model and data structureDear all, I have a question about the difference-in-difference (DID) model and its data structure. M…
xtprobit panel data predictionHi, I'm currently working on a project with panel data. I need to calculate propensity scores by us…
Panel data: Identify recurrent strings across columnsDear Statalist, I have a large dataset that contains several million emails (one row per email sent…
Variable selection in survival analysesHi All, I have clinical trial data, and my goal is to build a predictive model. In logistic analyse…
Subscribe to:
Post Comments (Atom)
0 Response to Deleting rows with NAs
Post a Comment