This is the third time I write this topic but did not get any answer from statalists members, and cannot find the answer in the forum.
I need to create portfolios by sorting past 1 month returns (past_ret_1) and standard deviation (volatility_1) and portfolios should be generated every month. And, I need to calculate the mean future returns(ri1) of portfolios.
In other words, sort stocks by sorting past 1 month returns (past_ret_1) and standard deviation (volatility_1). And group top 20% and SD top 50% stocks, portfolios should be created and replaced every month and calculate the portfolios' 1 month mean future return (ri1).
I have sorted stocks by past returns and price standard deviation. And, I tried to create portfolios using xtile. I want to create portfolios with double sorting; the first is top 20% past 1month returns stocks and top 50% standard deviation; the second is that bottom past 1month 20% return stocks and bottom 50% standard deviation ( portfolios should be generated every month)
I know if I have one sorting standard I could have used
bys mdate : egen portfolios = xtile(past_ret_1), nq(5)
But I cannot create portfolio with two sorting standards.

I have to create portfolios which
1. have top 20% 1month past returns and top 50% past 1 month volatility(standard deviation)
2. have bottom 20% past 1month returns and bottom 50% past 1 month volatility(standard deviation)



Could anyone help me?
I describe the variables which I need to code this.
permno is stock code,
date is date, prc is price of stock,
ast_ret_1 is past 1 month return,
volatility_1 is past 1 month volatility (standard deviation)
r1r is 5 quantiles of past_ret_1,
vol_grade1 is 2 quantiles of volatility_1
ri1 is 1 month future return of



I tried
// devide stocks by 20% quintiles with respect to past 1, 3, 6, month returns
. xtile r1r = past_ret_1, n(5)

. xtile r3r = past_ret_3, n(5)

. xtile r6r = past_ret_6, n(5)


// devide stocks by 50% quintiles with respect to past 1, 3, 6, month volatility

. xtile vol_grade1 = volatility_1, n(2)

. xtile vol_grade3 = volatility_3, n(2)

. xtile vol_grade6 = volatility_6, n(2)

//To generate portfolios which have top 20% returns and top 50% standard deviation - consctruct portfolios every month
bys mdate : gen winner1 = ri1 if r1r==5 & vol_grade1==2
(ri1 is the following month return)

//To get mean of winner1's following month return
bys mdate : egen meanwinner1 = mean(winner1)

But I cannot get the following month returns of portfoilios which include top 20% past return and top 50% standard deviation stocks.
Can anyone help?

My dataex is below

----------------------- copy starting from the next line -----------------------
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input double permno long date double(shrcd exchcd siccd prc ret) int mdate double volatility_1 float past_ret_1 double volatility_3 float past_ret_3 double volatility_6 float(past_ret_6 ri1 ri3 ri6) byte(r1r r3r r6r vol_grade1 vol_grade3 vol_grade6)
10001 18266 11 2 4925              10.25    -.004854387138038874 600                   .            .                  .            .                  .           .  -.025365876            0   .05951216 . . . . . .
10001 18294 11 2 4925  9.989999771118164    -.006958314683288336 601  .18640435354468468  -.025365876 .18640435354468468  -.025365876 .18640435354468468 -.025365876  .0010010239     .1811812   .20620625 2 2 3 1 1 1
10001 18322 11 2 4925                 10   -.0008392913150601089 602  .07973949391474112  .0010010239 .15942680476776733  -.024390243 .15942680476776733 -.024390243         .025         .137   .04350004 3 2 3 1 1 1
10001 18353 11 2 4925              10.25     .007866266183555126 603  .07564392234132054         .025 .13787852330894748            0 .13787852330894748           0    .15121953    .05951216   .07317073 4 3 3 1 1 1
10001 18385 11 2 4925 11.800000190734863      .03599647432565689 604  .40177915615148524    .15121953 .44905645667481014     .1811812 .40594366205503735   .15121953  -.036440704    .02118644  -.03898305 5 5 4 1 1 1
10001 18414 11 2 4925 11.369999885559082   -.0026315555442124605 605  .39753444140417754  -.036440704  .5543317709609373         .137  .5137325483141435   .10926828    -.0448549    -.0822339  -.10729994 2 5 4 1 1 1
10001 18444 11 2 4925 10.859999656677246                       0 606   .3195789827141747    -.0448549  .5530637553214912    .05951216  .7111912906637656   .05951216    .10957648   .012891376  -.03775321 2 4 4 1 1 1
10001 18476 11 2 4925 12.050000190734863     .028156990185379982 607  .38256143087180816    .10957648  .4674535510182806    .02118644  .7228745528019987   .20620625   -.13402487   -.05892117  -.10622405 5 3 5 1 1 1
10001 18506 11 2 4925   10.4350004196167      .00617106631398201 608   .6820635243785057   -.13402487  .5199689092052626    -.0822339  .6988548611401296   .04350004    .05414466  -.027312007   .05414466 1 2 3 2 1 1
10001 18536 11 2 4925                 11    -.010791356675326824 609  .23167174266670273    .05414466  .5051961032408528   .012891376  .5273756839519413   .07317073   .030909104   -.05000002   .06818182 4 3 4 1 1 1
10001 18567 11 2 4925  11.34000015258789    -.008732615038752556 610  .15765161420960289   .030909104 .45920004131705155   -.05892117 .47373630755060436  -.03898305   -.10493832   -.05026452 -.022045854 4 2 2 1 1 1
10001 18597 11 2 4925 10.149999618530273     .010956141166388988 611   .5875475317883132   -.10493832  .5126182310801831  -.027312007   .609981220237303  -.10729994    .02955667    .08374389    .1251232 1 2 2 2 1 1
10001 18630 11 2 4925 10.449999809265137   -.0066540539264678955 612  .12508096619524547    .02955667  .5297362400926223   -.05000002  .5926389438470832  -.03775321    .03062207    .12440193   .12057418 4 2 2 1 1 1
10001 18659 11 2 4925 10.770000457763672   -.0009275765623897314 613   .1578552469346256    .03062207  .3723881033701738   -.05026452  .5563828464510988  -.10622405   .021355575   .029712133   .04828222 4 2 2 1 1 1
10001 18687 11 2 4925                 11    .0018215354066342115 614  .07125262232538056   .021355575  .2324524127880026    .08374389 .41657432956710305   .05414466    .06818182    .03818183  -.00999997 4 4 4 1 1 1
10001 18718 11 2 4925              11.75    .0017050689784809947 615    .181595891063371    .06818182  .2560189479973279    .12440193  .4327399562258367   .06818182    -.0561702  -.003404252 -.065531954 5 5 4 1 1 1
10001 18749 11 2 4925  11.09000015258789     -.01246655359864235 616  .17742968647816745    -.0561702 .34554503303207285   .029712133  .5184807669582139 -.022045854    .02975653   .018034248 -.006311965 2 3 3 1 1 1
10001 18779 11 2 4925 11.420000076293945    -.006956514902412891 617  .10122221615745265    .02975653  .2562096761145746    .03818183 .43820764162425335    .1251232   .025394043   -.04640978  -.04991241 4 4 4 1 1 1
10001 18809 11 2 4925 11.710000038146973     .013852800242602825 618  .06950455926252143   .025394043 .18129218532038652  -.003404252 .35840022726152915   .12057418  -.035866786   -.06233992 -.023057256 4 3 4 1 1 1
10001 18840 11 2 4925 11.289999961853027     .009838967584073544 619  .22807671595986842  -.035866786 .18267390602016262   .018034248  .2969734976720698   .04828222   -.03542955  -.023914926  -.01416295 2 3 3 1 1 1
10001 18871 11 2 4925 10.890000343322754    -.008196649141609669 620   .1584367410581936   -.03542955 .26967476101129784   -.04640978 .26210378054041233  -.00999997   .008264389  -.003673091   .02387505 2 2 3 1 1 1
10001 18903 11 2 4925 10.979999542236328   -.0009099389426410198 621   .1362248386336823   .008264389 .36503089311441256   -.06233992  .3312659481663802 -.065531954   .003643071    .04189436   .04007291 3 2 2 1 1 1
10001 18932 11 2 4925 11.020000457763672    .0018182233907282352 622    .064879644634678   .003643071  .1754350624607524  -.023914926  .3031444882221424 -.006311965  -.015426503   .009990906  .014446435 3 2 3 1 1 1
10001 18962 11 2 4925 10.850000381469727    -.004587085917592049 623  .08011199628563465  -.015426503 .14098885706925854  -.003673091 .30494546040380033  -.04991241     .0543778     .0276497  -.05437789 2 3 2 1 1 1
10001 18995 11 2 4925   11.4399995803833    .0017512700287625194 624  .16471602550200323     .0543778  .1109390323861021    .04189436 .27715720948418837 -.023057256  -.027089104 -.0017482084   -.1171328 4 4 3 1 1 1
10001 19024 11 2 4925  11.13010025024414   -.0017846968257799745 625  .12695825733412597  -.027089104  .1505072818312588   .009990906 .17297727649822103  -.01416295  .0017878877   .004411454   -.0943478 2 3 3 1 1 1
10001 19053 11 2 4925 11.149999618530273   -.0009677049820311368 626   .0733472854133795  .0017878877  .1506023838790185     .0276497 .17794872754080054   .02387505    .02421529   -.07982057  -.10672642 3 3 3 1 1 1
10001 19085 11 2 4925 11.420000076293945    -.020583171397447586 627   .1590294799085855    .02421529 .14011209706522632 -.0017482084  .1718818116493562   .04007291  -.021085806   -.11558666  -.12872157 4 3 3 1 1 1
10001 19114 11 2 4925 11.179200172424316    -.022805705666542053 628  .17402728265658138  -.021085806 .15136438495279056   .004411454  .1767343709664558  .014446435   -.08222412   -.09832548   -.1027981 2 3 3 1 1 1
10001 19145 11 2 4925 10.260000228881836    -.016299143433570862 629   .2630426561283295   -.08222412 .25490894451350693   -.07982057 .21065142226993364  -.05437789  -.015594527  -.029239785  -.07602346 1 2 2 1 1 1
10001 19176 11 2 4925 10.100000381469727                       0 630    .262437261852884  -.015594527  .4555340676353445   -.11558666  .3951759012681891   -.1171328 -.0019802433   -.01485154  -.05148519 2 2 2 1 1 1
10001 19206 11 2 4925 10.079999923706055    -.006896521896123886 631  .06224752051650344 -.0019802433 .42426073529192365   -.09832548  .5055695043194937   -.0943478   -.01190475  -.004960336  -.02777775 3 2 2 1 1 1
10001 19240 11 2 4925  9.960000038146973    -.002003958448767662 632  .07820865732721459   -.01190475  .2119991506535575  -.029239785  .5751764591194123  -.10672642 -.0010040391   -.04819282  .003012021 3 2 2 1 1 1
10001 19267 11 2 4925  9.949999809265137    .0010060592321678996 633 .046484553045708754 -.0010040391 .10346999210154871   -.01485154   .524455669371931  -.12872157  .0080401935   -.03718592   .03919601 3 3 2 1 1 1
10001 19298 11 2 4925 10.029999732971191     .000898096477612853 634  .03227864172652164  .0080401935 .06351416957895344  -.004960336  .3920297684823155   -.1027981   -.05483551   -.02293116   .02392829 3 3 2 1 1 1
10001 19330 11 2 4925  9.479999542236328    -.004201776813715696 635   .4917846959868616   -.05483551 .37806184764038636   -.04819282 .34091790047554354  -.07602346   .010548564     .0537975   .08649796 2 2 2 1 1 1
10001 19360 11 2 4925  9.579999923706055       .0267952848225832 636  .12748062644580277   .010548564 .40215772419513063   -.03718592 .34743378822254384  -.05148519   .022964537    .07933196    .0960334 3 2 2 1 1 1
10001 19390 11 2 4925  9.800000190734863   -.0070921676233410835 637   .1730536192179159   .022964537  .3363810478802017   -.02293116 .32662120860743593  -.02777775    .01938771    .04795921   .06224486 4 2 2 1 1 1
10001 19418 11 2 4925  9.989999771118164    .0050302003510296345 638  .05680673034385046    .01938771 .25360936079801805     .0537975  .3271844424437017  .003012021   .035035074   .031031074     .016016 4 4 3 1 1 1
10001 19449 11 2 4925  10.34000015258789     .013725523836910725 639  .04287068869956355   .035035074 .18079184222215358    .07933196   .340254399421649   .03919601  -.006769796   .015473872 -.004835608 4 4 3 1 1 1
10001 19479 11 2 4925 10.270000457763672    -.005808273795992136 640  .14054930450066883  -.006769796 .13558691824147576    .04795921  .3700833577673592   .02392829   .002921103   .013631877 -.022395374 3 4 3 1 1 1
10001 19512 11 2 4925 10.300000190734863    .0019455698784440756 641  .12124643005719198   .002921103  .1874594287183265   .031031074 .35141358137286594   .08649796    .01941746  -.014563162  -.19708735 3 3 4 1 1 1
10001 19540 11 2 4925               10.5     .019417457282543182 642  .14604521823753902    .01941746 .17155749358700312   .015473872   .273556838331953    .0960334  -.008571443  -.020000003   -.2342857 4 3 4 1 1 1
10001 19571 11 2 4925  10.40999984741211    -.000959714874625206 643  .22069548057910818  -.008571443  .1684166689431317   .013631877 .22211684000340348   .06224486   -.02497601  -.035542738  -.11911622 3 3 4 1 1 1
10001 19604 11 2 4925 10.149999618530273    -.004901979584246874 644  .07947326195351662   -.02497601  .1584622601198413  -.014563162  .1841185037416441     .016016   .013793138    -.1852216 -.073891625 2 3 3 1 1 1
10001 19632 11 2 4925 10.289999961853027     .008823544718325138 645  .07089471348123667   .013793138 .14480615214672515  -.020000003  .1581658604218184 -.004835608   -.02429543    -.2186589   -.0281827 3 3 3 1 1 1
10001 19663 11 2 4925 10.039999961853027     .007021032273769379 646  .11058593465750331   -.02429543 .09025947741784955  -.035542738 .14096491287365762 -.022395374   -.17629477   -.08665337    .0846614 2 2 3 1 1 1
10001 19694 11 2 4925  8.270000457763672    -.036130473017692566 647    .623414004046124   -.17629477  .5098740407713392    -.1852216 .40667581431779926  -.19708735  -.027811425    .13663834   .25755733 1 1 1 2 1 1
10001 19725 11 2 4925  8.039999961853027    .0012453586095944047 648  .12027350435487831  -.027811425  .9765681054309964    -.2186589   .856076286427567   -.2342857    .14054728     .2437811   .29353228 2 1 1 1 1 1
10001 19757 11 2 4925  9.170000076293945                       0 649   .4675528098777736    .14054728  .7383673068649981   -.08665337  .8653969540244855  -.11911622    .02508174     .1875682    .3631407 5 2 2 1 1 1
10001 19785 11 2 4925  9.399999618530273     .004273500293493271 650  .23728124683069343    .02508174  .6891845208952013    .13663834  .8181591992611321 -.073891625    .06382983    .10638298    .1978724 4 5 2 1 1 1
10001 19814 11 2 4925                 10    -.005964256357401609 651  .16197478259265533    .06382983  .4120083692715949     .2437811  .7576223882289632   -.0281827    .08900003    .03999996         .17 5 5 2 1 1 1
10001 19844 11 2 4925 10.890000343322754   -.0009173647267743945 652  .44953050802713124    .08900003 .49894747190638905     .1875682  .8192106400636942    .0846614   -.04499548    .14784202   .04224059 5 5 4 1 1 1
10001 19876 11 2 4925 10.399999618530273    -.008579614572227001 653  .21985490386674195   -.04499548  .4790351795938581    .10638298  .9032507779990131   .25755733            0    .08269237   .09615385 2 4 5 1 1 1
10001 19905 11 2 4925 10.399999618530273    -.013282764703035355 654  .10365692927007192            0  .3015330210211246    .03999996  .6213321839858031   .29353228     .2019231    .12500003   .05961547 3 4 5 1 1 1
10001 19936 11 2 4925               12.5    -.030256038531661034 655  1.1404454300559521     .2019231  .7784783317600383    .14784202  .7770261287362366    .3631407   -.09919998   -.09199997  -.22800003 5 5 5 2 1 1
10001 19968 11 2 4925 11.260000228881836   -.0017730057006701827 656  .44702663991570357   -.09919998  .8851793244193881    .08269237  .8292865455040823    .1978724    .03907634   .012433338  -.10301952 1 4 5 1 1 1
10001 19997 11 2 4925 11.699999809265137    -.009314191527664661 657  .23346458803456374    .03907634  .7332278930742997    .12500003  .7541634327784786         .17   -.02991448    -.0581196  -.14957266 4 5 4 1 1 1
10001 20030 11 2 4925 11.350000381469727                       0 658  .14059028685323144   -.02991448  .3149031876679924   -.09199997  .6998235946019506   .04224059   .004405219    -.1497798  -.11101323 2 2 3 1 1 1
10001 20058 11 2 4925 11.399999618530273    -.008695685304701328 659  .09963676818455106   .004405219  .1929267962598497   .012433338  .6556062320346671   .09615385   -.03333326   -.11403503  -.12280699 3 3 4 1 1 1
10001 20090 11 2 4925 11.020000457763672                       0 660   .2737379653773335   -.03333326 .20405005636093954    -.0581196  .5456458673348294   .05961547    -.1243195   -.09709624  -.08620697 2 2 4 1 1 1
10001 20121 11 2 4925  9.649999618530273    -.010256449691951275 661   .4097300989645378    -.1243195  .4793438075213596    -.1497798 .48788475439816464  -.22800003     .0466322    .04559591  .013471515 1 1 1 1 1 1
10001 20149 11 2 4925 10.100000381469727                       0 662   .2446505058044584     .0466322  .6408768982377454   -.11403503  .6438900723449399  -.10301952   -.01485154  -.009901027  -.12871289 4 2 2 1 1 1
10001 20179 11 2 4925  9.949999809265137   -.0010040390770882368 663  .09795740644721498   -.01485154  .3840516538847445   -.09709624  .6957564225942188  -.14957266   .014070387    .01206029   -.1065326 2 2 2 1 1 1
10001 20209 11 2 4925  10.09000015258789     .001986142946407199 664  .06637716411991972   .014070387   .154285966169348    .04559591  .6503682985108398  -.11101323  -.008919737   -.03072353  -.12586723 3 4 2 1 1 1
10001 20240 11 2 4925                 10                       0 665   .0581172805442231  -.008919737   .107328667474757  -.009901027  .5381612061583212  -.12280699    .00699997   -.11999998  -.12700005 3 3 2 1 1 1
10001 20270 11 2 4925 10.069999694824219     -.02233014442026615 666  .16794321933282605    .00699997  .1206459891277396    .01206029  .2823565798780028  -.08620697   -.02879841   -.11717968  -.25322738 3 3 2 1 1 1
10001 20303 11 2 4925  9.779999732971191    -.024925224483013153 667   .1212776976858375   -.02879841 .13294903934247845   -.03072353  .1554382674821914  .013471515   -.10020445   -.09815951  -.13905928 2 2 3 1 1 1
10001 20332 11 2 4925  8.800000190734863    -.012345640920102596 668  .34786478479449284   -.10020445 .46126758551671454   -.11999998   .356839508408627  -.12871289    .01022729  -.007954619  -.05681818 1 2 2 1 1 1
10001 20362 11 2 4925  8.890000343322754    -.005592755973339081 669  .23358382474387235    .01022729  .5509337361041263   -.11717968  .5345813159474855   -.1065326  -.007874088   -.15410577   -.1226097 3 2 2 1 1 1
10001 20394 11 2 4925  8.819999694824219                       0 670  .18473612181984753  -.007874088  .2974306907681954   -.09815951  .5721746581352123  -.12586723    -.0102041   -.04535143  -.21655327 3 2 2 1 1 1
10001 20423 11 2 4925  8.729999542236328   -.0011441910173743963 671  .11627884176868694    -.0102041 .21259853951346633  -.007954619  .5713980810324415  -.12700005   -.13860248   -.04925537  -.18556695 3 3 2 1 1 1
10001 20457 11 2 4925  7.519999980926514     .009395996108651161 672   .5579679723619297   -.13860248  .6512967430482997   -.15410577  .7329853960190996  -.25322738    .11968087    .03723407  -.05851065 1 1 1 1 1 1
10001 20485 11 2 4925  8.420000076293945      .01201927661895752 673  .27671314614485903    .11968087  .5680918456949471   -.04535143  .6159062690213537  -.13905928  -.014251768   -.17933494  -.15083136 5 2 2 1 1 1
10001 20514 11 2 4925  8.300000190734863       .0559796504676342 674   .2349002451136125  -.014251768  .4202801443741118   -.04925537   .561834561666733  -.05681818   -.06024096    -.1433735  -.10361447 2 2 2 1 1 1
10001 20545 11 2 4925  7.800000190734863   -.0012803779682144523 675  .13742525924620014   -.06024096 .22447660547009565    .03723407  .5332888965346905   -.1226097    -.1141026   -.09230772  -.03333336 2 4 2 1 1 1
10001 20576 11 2 4925  6.909999847412109     -.05342470481991768 676   .2633846021305704    -.1141026 .39412138769836946   -.17933494  .5052049115736454  -.21655327     .0289436    .03473231    .7872649 1 1 1 1 1 1
10001 20606 11 2 4925  7.110000133514404    -.004201643168926239 677  .09567675569586913     .0289436 .48335545823210324    -.1433735  .5042947253178054  -.18556695  -.004219439    .04641349    .7510548 4 1 1 1 1 1
10001 20636 11 2 4925  7.079999923706055      .01287555880844593 678  .05673900789326746  -.004219439  .2530382865060027   -.09230772  .5272738438726049  -.05851065    .00988703    .06497176    .7796611 3 2 2 1 1 1
10001 20667 11 2 4925  7.150000095367432     .007042280398309231 679 .048782661566319226    .00988703 .10762584669607418    .03473231  .5020461587462266  -.15083136    .04055943     .7272727    .7692307 3 4 2 1 1 1
10001 20698 11 2 4925  7.440000057220459     .010869554243981838 680   .1220978336810731    .04055943 .17764848751005802    .04641349 .39596763716385475  -.10361447   .013440847     .6733871    .7002687 4 4 2 1 1 1
10001 20730 11 2 4925  7.539999961853027    -.016949167475104332 681   .1715364726753886   .013440847 .23925850670954377    .06497176  .2817927559295505  -.03333336     .6379311     .6710876    .6777188 3 4 2 1 1 1
10001 20759 11 2 4925 12.350000381469727                       0 682   2.115515531436557     .6379311 2.1413539866430558     .7272727 1.7401421430669661    .7872649    .00809712   .024291435  .012145718 5 5 5 2 2 2
10001 20789 11 2 4925 12.449999809265137    -.004000015091150999 683   .0970518319368766    .00809712   2.39688207556103     .6733871 2.3624398394939847    .7510548    .01204824   .016064242  .016064242 3 5 5 1 2 2
10001 20822 11 2 4925 12.600000381469727     .003984078764915466 684  .07054213004398015    .01204824 1.3418394719060822     .6710876  2.550009684547101    .7796611   .003968193   .003968193   .02380946 3 5 5 1 2 2
10001 20851 11 2 4925 12.649999618530273                       0 685  .04757363708671314   .003968193 .09452372153657818   .024291435  2.458981151214114    .7692307            0  -.011857677    .0316206 3 3 5 1 1 2
10001 20879 11 2 4925 12.649999618530273                       0 686 .039366089860446346            0  .0711081492552561   .016064242  2.013523405989526    .7002687            0            0           . 3 3 5 1 1 2
10001 20912 11 2 4925 12.649999618530273    -.003937022760510445 687   .0473913086863199            0 .04519681973146688   .003968193  .9858898764953599    .6777188  -.011857677   .019762846           . 3 3 5 1 1 1
10001 20940 11 2 4925               12.5                       0 688 .041696421737767955  -.011857677 .05335704570218714  -.011857677 .08043606477525421  .012145718    .01199997    .04400001           . 3 3 3 1 1 1
10001 20971 11 2 4925 12.649999618530273    -.003937022760510445 689 .052265164265786236    .01199997 .05701883729893278            0 .06425233168020862  .016064242   .019762846            .           . 3 3 3 1 1 1
10001 21003 11 2 4925 12.899999618530273    -.001934280269779265 690  .10233207953408884   .019762846 .10971372377365043   .019762846 .08449748919907539   .02380946   .011627952            .           . 4 3 3 1 1 1
10001 21032 11 2 4925 13.050000190734863     .007722037378698587 691  .05897991367034467   .011627952 .14225035481618584    .04400001 .13428686175196708    .0316206            .            .           . 3 4 3 1 1 1
10002 18266 11 3 6020 3.0999999046325684      .08013938367366791 600                   .            .                  .            .                  .           .     .2451613     .5644838   .21290326 . . . . . .
10002 18294 11 3 6020  3.859999895095825    -.015306168235838413 601   .4296841825364234     .2451613  .4296841825364234     .2451613  .4296841825364234    .2451613    .17875656     .4145078   -.1554404 5 5 5 1 1 1
10002 18322 11 3 6020  4.550000190734863     .004415006842464209 602  .36717583363251327    .17875656  .7387044837153376     .4677421  .7387044837153376    .4677421    .06591199   -.03736265  -.31428576 5 5 5 1 1 1
10002 18353 11 3 6020  4.849899768829346 -.000020646557459258474 603  .10538855626183742    .06591199  .7850850067661307     .5644838  .7850850067661307    .5644838    .12579647   -.22472624  -.36905915 5 5 5 1 1 1
10002 18385 11 3 6020  5.460000038146973     -.11793214827775955 604   .3809403276799246    .12579647   .589193584993965     .4145078  .9486795247042981    .7612904    -.1978022    -.4029304   -.4578755 5 5 5 1 1 1
10002 18414 11 3 6020  4.380000114440918    -.011286617256700993 605  .46236515967535524    -.1978022 .47578619431157226   -.03736265  .8975770443956432    .4129033   -.14155254   -.28767127   -.4200914 1 2 5 1 1 1
10002 18444 11 3 6020  3.759999990463257     .016216199845075607 606  .33242027453540607   -.14155254   .681697207867179   -.22472624  .8364520181489538   .21290326   -.13297872    -.1861702   -.3005319 1 1 5 1 1 1
10002 18476 11 3 6020  3.259999990463257     .061889272183179855 607    .229305905784321   -.13297872  .7488768581626191    -.4029304  .7608379566539603   -.1554404   -.04294482   -.09202453  -.20858897 1 1 2 1 1 1
end
format %d date
format %tm mdate
------------------ copy up to and including the previous line ------------------

Listed 100 out of 760954 observations
Use the count() option to list more