I have an unbalanced panel data. I am trying to calculate the average risk-taking ratio of similarly sized, successful other firms at T. Variable cumRisk5 is the average risk-taking ratio of the focal firm over the past 5 years. Perf_rank and fsize are quintile variables created based on firm profit over the past 5 years (Perf_rank) and firm sales over the past 5 years (fsize).
If the size code of firm j is the same as the focal firm i's, then these two firms are considered as 'similar' firms. If Perf_rank is 5 (top quartile), this firm is considered to be successful. For example, the focal firm's size is 1 (smallest), then I want to calculate the average risk-taking ratio of other successful firms with the same size number (1) and highest perf_rank (5) at t, which is the sum of cumRisk5 of 'other' firms with size 1 and Perf_rank 5 divided by the number of those other firms at T.
I want to calculate this number for each observation. I tried calculating this number manually by dividing the database into 5 parts based on size, but I would like to study if there is any simpler, wiser way of creating this variable (e.g. Loop). I have been learning a lot from Statalist, and I would greatly appreciate it if anyone can give me suggestions or comments.
Thank you in advance for your help!
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float firm int year float(cumRisk5 Perf_rank fsize) 43 2011 1 4 3 43 2012 .5 4 3 43 2013 .3333333 4 3 43 2014 1.25 4 4 69 2011 1 4 4 69 2012 1.5 4 4 69 2013 .8333334 4 4 79 2007 1 5 4 79 2008 .5 5 4 86 2004 1 2 3 86 2005 1.1666667 2 5 86 2006 .6666667 2 5 86 2007 1.4722222 2 5 86 2008 .8666667 3 5 86 2011 1.2 3 5 86 2012 .5 3 5 86 2013 .3333333 3 5 86 2014 1.25 3 5 86 2015 .7 3 4 89 2006 1 3 3 89 2007 .5 3 4 89 2008 1.3333334 3 4 89 2009 1.0833334 3 4 89 2010 1.0333333 3 4 89 2011 .5277778 3 5 89 2012 .3944445 3 5 89 2013 1.15 3 5 89 2014 .8166667 3 5 89 2015 .4583333 3 5 103 2002 .3333333 1 3 103 2003 .25 1 2 103 2004 .2 1 2 103 2005 0 1 3 103 2006 0 1 3 119 2014 1 1 2 119 2015 .5 1 2 124 1997 .5 5 5 124 1998 .3333333 5 5 124 1999 .25 5 5 124 2000 .2 5 5 124 2001 0 5 5 124 2002 1 5 5 124 2003 .5 5 5 124 2004 .3333333 5 5 124 2005 .25 5 5 124 2006 1.2 5 5 124 2007 .5 5 5 124 2008 .3333333 5 5 124 2009 .25 5 5 124 2010 .2 5 5 124 2011 0 5 5 124 2012 0 5 5 124 2013 0 5 5 124 2014 0 5 5 124 2015 0 5 5 131 2009 1.3333334 2 2 131 2010 .75 3 2 131 2011 .53333336 3 3 131 2012 .25 3 3 131 2013 .2 3 3 138 2015 0 2 2 153 2009 1 4 4 153 2010 .5 4 5 153 2011 .3333333 4 5 153 2012 .25 4 5 153 2013 .2 4 5 153 2014 1 4 5 153 2015 .5 4 5 157 2004 1 3 4 157 2005 .5 3 4 157 2006 .3333333 3 4 157 2007 .25 3 4 157 2008 .2 3 4 168 2015 1 1 2 169 2012 1 5 5 169 2013 1.5 5 5 169 2014 .8333334 5 5 169 2015 .5833334 5 5 190 2008 1 4 4 195 2004 1 2 2 195 2005 1.5 2 2 195 2006 .8333334 2 2 195 2007 .5833334 2 2 195 2008 .45 2 2 198 2014 1 1 3 198 2015 .5 1 3 210 2012 1.3333334 2 3 210 2013 .75 2 3 210 2014 .53333336 2 3 210 2015 .25 2 3 212 2008 1 3 4 212 2009 .5 3 4 212 2010 .3333333 3 4 212 2011 1.25 3 4 212 2012 .7 4 4 236 2007 1.25 3 4 236 2008 .7 3 4 236 2009 .3333333 3 4 236 2010 .25 3 4 236 2011 .2 3 4 end format %-ty year
0 Response to Calculating the average risk taking ratio of similarly sized, successful other firms at T
Post a Comment