I'm having a problem analysing my dataset. I'm trying to get the prevalence and 95% CI using invlogit after logit, stratified by age group. The code I used for the first age group worked perfectly fine:
Code:
. svy: logit disease i.agegroup i.agegroup _Iagegroup_1-4 (naturally coded; _Iagegroup_1 omitted) Multiple-imputation estimates (svy: logit) Imputations = 20 Survey: Logistic regression Minimum obs = 61763 Minimum dof = 28.1 ------------------------------------------------------------------------------ disease | Coef. Std. Err. t P>|t| [95% Conf. Int.] FMI -------------+---------------------------------------------------------------- _Iagegroup_2 | 1.17125 .662175 1.77 0.086 -.172402 2.5149 0.392 _Iagegroup_3 | 1.51965 .643212 2.36 0.025 .202209 2.83708 0.484 _Iagegroup_4 | 1.91023 .63209 3.02 0.005 .61969 3.20078 0.455 _cons | -7.37062 .652405 -11.30 0.000 -8.69879 -6.04245 0.427 ------------------------------------------------------------------------------ . di 100000*invlogit(_b[_cons]) 62.907951 . di 100000*invlogit(_b[_cons] - invnormal(0.975)*_se[_cons]) 17.521634 . di 100000*invlogit(_b[_cons] + invnormal(0.975)*_se[_cons]) 225.59326
However, I'm stuck trying to estimate the 95% CI of other age groups. My code is like this:
Code:
. di 100000*invlogit(_b[_cons] + _b[_Iagegroup_4]) 202.65838 . di 100000*invlogit(_b[_cons] + _b[_Iagegroup_4] - invnormal(0.975)*(_se[_cons] + _se[_Iagegroup_4])) 15.438546 . di 100000*invlogit(_b[_cons] + _b[_Iagegroup_4] + invnormal(0.975)*(_se[_cons] + _se[_Iagegroup_4])) 2601.186
Best regards,
Hain
0 Response to 95% confidence interval with invlogit
Post a Comment