Hello,
I am writing my master thesis and I have to find the causal relationship between the Belgian gender quotum in board of directors of listed firms and firm performance. I use the DD method and more specifically, I use xtdidregress in Stata 17. Here you see a little bit of data. The variables are Year, CompanyID (just a number per company), Age, LnSales, ROA, BoardMembers, PercentageIndependentDirectors, CriteriaMet (the year the company met the criteria of the law.
+-----------------------------------------------------------------------------+
| Year Compan~D Age LnSales ROA BoardM~s Percen~s Criter~t |
|-----------------------------------------------------------------------------|
1. | 2008 100 43 8.7498276 14.03 4 0.25 2019 |
2. | 2009 100 44 8.8176829 13.59 4 0.25 2019 |
3. | 2010 100 45 8.8928999 13.31 4 0.25 2019 |
4. | 2011 100 46 8.967963 12.08 4 0.25 2019 |
5. | 2012 100 47 9.0254074 11.16 5 0.40 2019 |
6. | 2013 100 48 9.0655458 11.21 5 0.40 2019 |
7. | 2014 100 49 9.0956924 9.81 5 0.40 2019 |
8. | 2015 100 50 9.1245101 8.98 5 0.40 2019 |
9. | 2016 100 51 9.1583626 9.54 5 0.40 2019 |
10. | 2017 100 52 9.1083741 9.46 5 0.40 2019 |
11. | 2018 100 53 9.1520649 9.22 5 0.40 2019 |
12. | 2019 100 54 9.1675372 9.39 5 0.40 2019 |
13. | 2020 100 55 9.2033862 9.95 6 0.50 2019 |
|-----------------------------------------------------------------------------|
14. | 2008 101 19 9.1235439 4.8 10 0.70 2017 |
15. | 2009 101 20 8.8446859 3.13 10 0.60 2017 |
16. | 2010 101 21 9.1789641 8.53 10 0.60 2017 |
17. | 2011 101 22 9.5805885 9.73 10 0.50 2017 |
18. | 2012 101 23 9.4373177 6.68 10 0.50 2017 |
19. | 2013 101 24 9.1921005 5.27 10 0.40 2017 |
20. | 2014 101 25 9.0857418 4.9 9 0.33 2017 |
21. | 2015 101 26 9.1796425 4.58 9 0.56 2017 |
22. | 2016 101 27 9.253739 3.48 11 0.55 2017 |
23. | 2017 101 28 9.3882576 5.09 10 0.60 2017 |
24. | 2018 101 29 9.526372 6.35 10 0.60 2017 |
25. | 2019 101 30 9.7691032 5.05 10 0.60 2017 |
26. | 2020 101 31 9.9383776 2.32 9 0.67 2017 |
|-----------------------------------------------------------------------------|
27. | 2008 102 78 8.6845703 12.13 13 0.54 2008 |
28. | 2009 102 79 8.6864295 13.6 14 0.57 2008 |
29. | 2010 102 80 8.7875256 17.45 14 0.50 2008 |
30. | 2011 102 81 8.7579409 10.16 14 0.50 2008 |
31. | 2012 102 82 8.7663943 8.73 14 0.50 2008 |
32. | 2013 102 83 8.7385752 8.72 12 0.58 2008 |
33. | 2014 102 84 8.6929935 8.78 13 0.46 2008 |
34. | 2015 102 85 8.6901376 6.91 13 0.54 2008 |
35. | 2016 102 86 8.6706007 7.24 13 0.54 2008 |
36. | 2017 102 87 8.6550403 6.83 11 0.64 2008 |
37. | 2018 102 88 8.659387 6.28 14 0.50 2008 |
38. | 2019 102 89 8.6372847 4.62 14 0.50 2008 |
39. | 2020 102 90 8.6020857 6.78 13 0.54 2008 |
|-----------------------------------------------------------------------------|
40. | 2008 103 203 8.7236869 3.29 11 0.18 2020 |
41. | 2009 103 204 8.7434838 4.85 12 0.00 2020 |
42. | 2010 103 205 8.8612934 5.82 13 0.23 2020 |
43. | 2011 103 206 8.6957242 8.11 13 0.23 2020 |
44. | 2012 103 207 8.6151363 6.63 13 0.23 2020 |
45. | 2013 103 208 8.6071253 4.28 13 0.15 2020 |
46. | 2014 103 209 8.6200385 1.02 13 0.23 2020 |
47. | 2015 103 210 8.7053974 4.94 10 0.30 2020 |
48. | 2016 103 211 8.7751941 2.21 8 0.38 2020 |
49. | 2017 103 212 8.1476067 2.86 8 0.38 2020 |
50. | 2018 103 213 8.1825872 2.62 8 0.50 2020 |
51. | 2019 103 214 8.2424405 2.81 11 0.36 2020 |
52. | 2020 103 215 8.1071175 4.26 11 0.36 2020 |
|-----------------------------------------------------------------------------|
53. | 2008 104 13 7.3348064 24 12 0.25 2018 |
54. | 2009 104 14 7.3570318 22.45 12 0.25 2018 |
55. | 2010 104 15 7.4173521 21.7 12 0.33 2018 |
56. | 2011 104 16 7.413114 17.01 12 0.33 2018 |
57. | 2012 104 17 7.4088184 14.08 12 0.33 2018 |
58. | 2013 104 18 7.2870817 6.59 12 0.33 2018 |
59. | 2014 104 19 7.1302522 3.42 12 0.33 2018 |
60. | 2015 104 20 7.1015368 5.51 12 0.33 2018 |
61. | 2016 104 21 7.1023849 5.4 13 0.31 2018 |
62. | 2017 104 22 7.1125955 3.02 12 0.33 2018 |
63. | 2018 104 23 7.1087015 2.47 12 0.33 2018 |
64. | 2019 104 24 7.162661 2.41 12 0.33 2018 |
65. | 2020 104 25 7.1580135 3.29 12 0.33 2018 |
|-----------------------------------------------------------------------------|
66. | 2008 105 4 10.065054 3.75 13 0.31 2019 |
67. | 2009 105 5 10.512111 6.62 13 0.31 2019 |
68. | 2010 105 6 10.49949 5.86 12 0.33 2019 |
69. | 2011 105 7 10.572496 6.84 12 0.33 2019 |
70. | 2012 105 8 10.590566 7.96 11 0.27 2019 |
71. | 2013 105 9 10.67348 12.5 10 0.30 2019 |
72. | 2014 105 10 10.759242 7.48 11 0.27 2019 |
73. | 2015 105 11 10.682904 7.33 13 0.23 2019 |
74. | 2016 105 12 10.725841 1.88 15 0.20 2019 |
75. | 2017 105 13 10.941004 4.54 15 0.20 2019 |
76. | 2018 105 14 10.908137 2.96 15 0.20 2019 |
77. | 2019 105 15 10.865306 5.39 15 0.20 2019 |
78. | 2020 105 16 10.755368 .75 15 0.20 2019 |
|-----------------------------------------------------------------------------|
79. | 2008 106 13 6.7526313 17.93 10 0.30 2019 |
80. | 2009 106 14 6.1340161 1.49 10 0.30 2019 |
81. | 2010 106 15 6.2635411 3.91 9 0.33 2019 |
82. | 2011 106 16 5.9775101 -.95 10 0.30 2019 |
83. | 2012 106 17 6.0178655 -2.44 9 0.44 2019 |
84. | 2013 106 18 5.9937145 -1.4 11 0.27 2019 |
85. | 2014 106 19 6.1611757 .47 11 0.27 2019 |
86. | 2015 106 20 6.7411185 13.14 13 0.31 2019 |
87. | 2016 106 21 6.5283453 7.74 11 0.55 2019 |
88. | 2017 106 22 6.2409929 1.34 8 0.62 2019 |
89. | 2018 106 23 6.3969697 -1.2 8 0.62 2019 |
90. | 2019 106 24 6.8377372 4.92 9 0.67 2019 |
91. | 2020 106 25 7.115379 13.95 6 0.83 2019 |
|-----------------------------------------------------------------------------|
92. | 2008 107 74 6.5865688 3.64 11 0.45 2021 |
93. | 2009 107 75 6.4584417 -8.87 10 0.50 2021 |
94. | 2010 107 76 6.7990547 7.35 9 0.56 2021 |
95. | 2011 107 77 6.9481714 10.78 9 0.56 2021 |
96. | 2012 107 78 7.0527072 11.86 9 0.44 2021 |
97. | 2013 107 79 7.0544626 6.53 8 0.62 2021 |
98. | 2014 107 80 6.8116496 2.74 8 0.62 2021 |
99. | 2015 107 81 6.9362028 2.08 9 0.67 2021 |
100. | 2016 107 82 7.0051923 1.27 8 0.88 2021 |
101. | 2017 107 83 6.9890643 2.59 10 0.60 2021 |
102. | 2018 107 84 6.9358868 7.72 10 0.50 2021 |
103. | 2019 107 85 6.9870931 9.25 7 0.43 2021 |
104. | 2020 107 86 6.6464983 -.23 7 0.43 2021 |
|-----------------------------------------------------------------------------|
105. | 2008 108 79 6.3838495 5.47 24 0.33 2008 |
106. | 2009 108 80 6.5338324 3.92 24 0.46 2008 |
107. | 2010 108 81 6.4887717 8.09 23 0.35 2008 |
108. | 2011 108 82 6.5650635 4.47 17 0.41 2008 |
109. | 2012 108 83 6.4398391 4.1 20 0.40 2008 |
110. | 2013 108 84 6.4298388 3.53 20 0.40 2008 |
111. | 2014 108 85 6.3891495 3.13 20 0.40 2008 |
112. | 2015 108 86 6.3853816 3.18 20 0.40 2008 |
113. | 2016 108 87 6.3220894 2.67 20 0.40 2008 |
114. | 2017 108 88 6.3571904 3.55 19 0.37 2008 |
115. | 2018 108 89 6.4126045 2.67 19 0.37 2008 |
116. | 2019 108 90 6.4153866 3.28 20 0.40 2008 |
117. | 2020 108 91 6.3758371 3.73 15 0.53 2008 |
As you can see, I have all the data for all companies form 2008 until 2020. The year the law was passed is 2011.
Now I will show you the code I gave stata.
. xtset CompanyID Year, yearly
Panel variable: CompanyID (strongly balanced)
Time variable: Year, 2008 to 2020
Delta: 1 year
. generate Time=(Year>2011)
. generate Treated=.
(663 missing values generated)
. replace Treated=0 if CriteriaMet<=2011
(65 real changes made)
. replace Treated=1 if CriteriaMet>2011
(598 real changes made)
. replace Treated=0 if CriteriaMet<=2011 & Year<2011
(0 real changes made)
. generate TimeTreated=Time*Treated
. xtdidregress (ROA Age LnSales BoardMembers PercentageIndependentDirectors)(TimeTreated), group(CompanyID) time(Year)
The outcome:
xtdidregress (ROA Age LnSales BoardMembers PercentageIndependentDirectors)(TimeTreated), group(CompanyID) time(Year)
note: 2020.Year omitted because of collinearity.
Number of groups and treatment time
Time variable: Year
Control: TimeTreated = 0
Treatment: TimeTreated = 1
-----------------------------------
| Control Treatment
-------------+---------------------
Group |
CompanyID | 5 46
-------------+---------------------
Time |
Minimum | 2008 2012
Maximum | 2008 2012
-----------------------------------
Difference-in-differences regression Number of obs = 663
Data type: Longitudinal
(Std. err. adjusted for 51 clusters in CompanyID)
------------------------------------------------------------------------------------------------
| Robust
ROA | Coefficient std. err. t P>|t| [95% conf. interval]
-------------------------------+----------------------------------------------------------------
ATET |
TimeTreated |
(1 vs 0) | -2.682235 2.406841 -1.11 0.270 -7.516517 2.152048
------------------------------------------------------------------------------------------------
Note: ATET estimate adjusted for covariates, panel effects, and time effects.
I don't understand why they would only use 2008-2012. I have a wider range of data and it is all there. Did I do something wrong?
Thanks in advance for your help
Kind regards
Marie De Tollenaere
Related Posts with xtdidregress problem: not all my data is used
Stripping a variable of another's effect (or Fama-MacBeth regressions)Hello everyone, I have time series data with over 1000 daily observations regarding financial asset…
Command for Listwise deletionI am doing linear regression and my IV has more cases than my DV so our instructor told us to do lis…
Update and paper on -reldist-The -reldist- package (relative distribution analysis) has been updated on SSC. Type Code: . ssc i…
Major update to -moremata-A new version of -moremata- is available from SSC. Type Code: . ssc install moremata, replace to i…
Interpretation formulas of Poisson regression coefficient formula for percentages and logsDear Statalist members, I have done a Poisson fixed effects panel regression (Stata 13) regressing …
Subscribe to:
Post Comments (Atom)
0 Response to xtdidregress problem: not all my data is used
Post a Comment