I'm generating some graphs for data illustration purposes. As a brief background, the project is about weight change during various trimesters of pregnancy
T3T2WC = weight change from trimester 2 to trimester 3
T3T1WC = weight change from trimester 1 to trimester 3
cfPWVT3T2 = the outcome of interest in its change between trimester 2 to trimester 3
cfPWVT3T1 = the outcome of interest in its change between trimester 1 to trimester 3
prepregBMI = the pre-pregnancy BMI (weight divided by height squared)
after running some basic regression commands I computed the predicted probabilities in order to create the data-visualizations.
Code:
regress cfPWVT3T2 T3T2WC prepregBMI predict xb_t3t2, xb regress cfPWVT3T1 T3T1WC prepregBMI predict xb_t3t1, xb
The issue is when I try to generate the twoway graph lfitci
The graph of Trimester 2 to Trimester 3 is fine
Code:
twoway lfitci xb_t3t2 T3T2WC
Code:
twoway lfitci xb_t3t1 T3T1WC
Dataset is below (i.e. a 100 person sample of the whole dataset which is 318 people)
Thanks again.
Sincerely,
Christopher
Code:
Example generated by -dataex-. For more info, type help dataex clear input double(T3T2WC T3T1WC cfPWVT3T2 cfPWVT3T1 prepregBMI) float(xb_t3t1 xb_t3t2) 5.399999999999999 9.300000000000004 -.9093333330000002 .6406666669999996 18.286779733945284 .2587547 .4975052 . . . . 16.415307274033037 . . 7.5 13.100000000000001 .44066666700000035 . 18.31168376457407 .3956631 .4510987 9 14.599999999999994 .34999999999999964 . 18.07399361588409 .4500532 .4225144 5.350000000000001 10.949999999999996 -.15000000000000036 -.6500000000000004 18.22222222222222 .3183075 .4997526 4.666666669999998 9.166666669999998 -.6499999999999995 -.46666666700000015 18.2468820861678 .25400567 .5142679 9.949999999999996 13.449999999999996 -.18333333299999932 -.9333333329999993 18.32382784763737 .4082592 .3972599 . . -.20000000000000018 1.0499999999999998 17.54325259515571 . . 16.200000000000003 24.39999999999999 -1.4000000000000004 -.6500000000000004 23.259350240189075 .7959473 .17231514 8.299999999999997 12.300000000000004 .2999999999999998 -1.2999999999999998 21.82995219993225 .3618965 .3707492 9.299999999999997 14 -.5499999999999998 -.5939999999999994 20.648868989942862 .4248178 .3699582 5.400000000000006 . -.11300000000000043 . 21.923122129313626 . .4325559 4.633333329999999 7.633333329999999 . . 21.587109373247376 .1940613 .4553372 11.200000000000003 13.600000000000009 .34999999999999964 -.04999999999999982 24.34175828634022 .4052213 .2624146 6.050000000000004 11.050000000000004 1.5 .75 19.100091827364555 .3206796 .4687523 7.900000000000006 12.700000000000003 .75 .8999999999999995 22.3081499107674 .3756407 .37096265 9.766666670000006 . -.15000000000000036 -.23666666699999972 20.9366391184573 . .3546046 6.800000000000011 13 .5500000000000007 1.8000000000000007 23.563394034178476 .3846908 .3726177 4.066666669999989 9.066666669999996 1.1420000000000003 2.05 20.522956094284478 .2472084 .48674655 6.200000000000003 9.700000000000003 2.1000000000000005 1.0910000000000002 23.03004535147392 .2665147 .3952758 3.499999999999993 . 1.0833333329999997 .8499999999999996 18.778344671201815 . .5303097 3.6999999999999957 10.799999999999997 1.3500000000000005 1.1000000000000005 19.80175716069689 .3106857 .50765306 7.300000000000004 11.900000000000006 .09999999999999964 -.3620000000000001 21.60410477990818 .34779835 .3966696 2.5999999999999943 7.200000000000003 .5 .23599999999999977 23.808690171912748 .17532793 .46015975 9.75 13.450000000000003 1.0833333330000006 -.024999999999999467 23.309053069719045 .4012646 .3125953 6.5 8 .25 .125 22.75830678197542 .20563185 .3935634 10.799999999999997 16.700000000000003 1 1.196333333 21.109071767463263 .52147394 .3289087 . . .5903333330000002 -1.2000000000000002 24.884678099855066 . . 8.399999999999991 . -.7999999999999998 .09999999999999964 21.671258034894397 . .371395 . . -.8660000000000005 .2999999999999998 24.369914934090428 . . 9.840000000000003 16.040000000000006 -.45999999999999996 .5 24.12488556142162 .4934577 .29605383 7.550000000000004 13.750000000000007 1.233333333 .1333333329999995 21.479004913162253 .41464365 .3934324 . . . . 23.93898977463151 . . 6 11.5 .1166666670000005 -.983333333 21.155692151363148 .3340124 .43313125 8.266666670000006 9.96666667000001 1.0249999999999995 -.6750000000000007 . . . 7.399999999999999 11.399999999999999 .09999999999999964 .09999999999999964 19.656469872920088 .3325121 .429268 7.340000000000003 14.940000000000005 1.1500000000000004 . 21.578567039805428 .4573888 .3962503 6.400000000000006 11.5 -.9500000000000002 -.75 23.738662131519277 .3303883 .3782418 6.733333329999994 10.933333329999996 -.4500000000000002 .9499999999999993 19.605191995673337 .3157665 .4447749 . . 2.1999999999999993 2.05 22.49963710262738 . . 6 . .10000000000000053 .6500000000000004 20.224444345457176 . .4497644 1.5 7.200000000000003 1.1973333330000004 1.3500000000000005 24.16716240333135 .17482497 .4778322 .5 4.5 -1.0499999999999998 -1.6499999999999995 23.875114784205692 .0779329 .50493497 3.8999999999999986 . -1.1166666670000005 -1.6500000000000004 20.79731513915657 . .4854939 4.700000000000003 13.100000000000009 -1.3499999999999996 -.8699999999999992 21.126284478096267 .391714 .4621089 17.833333300000007 23.333333300000007 . . 24.40311824005378 .7559023 .11613816 2.1000000000000085 9.200000000000003 1.5 .7650000000000006 24.884678099855066 .24589367 .4518846 3.6499999999999915 8.649999999999991 1.25 .7999999999999998 23.61425865706437 .2278554 .4406517 . . .2999999999999998 .39999999999999947 24.609733700642792 . . 5.166666669999998 . -.25 -.01333333300000028 . . . . . . . 20.357184834362656 . . 8.975000000000009 21.075000000000003 -.6499999999999995 -.25 23.808690171912748 .6753512 .3206333 10.599999999999994 . .5999999999999996 -.15000000000000036 20.047445621303755 . .3522479 5 10.299999999999997 1.3499999999999996 0 20.655951391882127 .29146832 .4639437 .03333332999999783 2.1333333299999993 -1.5999999999999996 -1.8499999999999996 24.557752341311133 -.0083141355 .502956 6.599999999999994 . -.5999999999999996 .6960000000000006 24.795388067142575 . .35499015 10.599999999999994 20.699999999999996 .04999999999999982 -.08333333299999968 20.3332428178696 .6667133 .3471432 . . 3.55 2.8 24.272028071740092 . . 2.6333333299999993 4.133333329999999 -.25 -.6000000000000005 22.96176737682195 .06600056 .4745572 5.949999999999996 . .766666667 2.05 21.655432910844162 . .4252996 7.083333330000002 9.333333330000002 -.20000000000000018 1.6499999999999995 21.967120181405896 .2547922 .3949278 . . . . 24.304617877396705 . . 2 7.8999999999999915 -.04999999999999982 .7000000000000002 23.011792727350972 .2016724 .4875251 5.5 . -.25 -1.2000000000000002 20.3332428178696 . .4587644 3.9000000000000057 13.100000000000001 .8000000000000003 -.6173333329999995 23.98010958910082 .3877099 .4286455 5.833333330000002 15.63333333 .2999999999999998 .34999999999999964 24.743813659962917 .4779339 .372691 5 12.099999999999994 3.1000000000000005 3.3500000000000005 22.862684506284214 .35324 .4245289 9.799999999999997 11.399999999999999 . . 23.90983849331605 .3265444 .3007703 . . -.09999999999999964 -1.2999999999999998 21.923122129313626 . . 3.999999999999993 9.399999999999991 -.8499999999999996 -1.7999999999999998 20.2020202020202 .25967127 .4939379 9.950000000000003 22.05000000000001 .16533333299999953 .7953333329999994 24.38803526318237 .7096751 .28894615 8.900000000000006 16.300000000000004 1.8999999999999995 1.25 19.909972299168977 .50874126 .3919104 8.200000000000003 9.200000000000003 1.1499999999999995 -.10000000000000053 18.86692176870748 .25433695 .425861 7.066666670000004 14.666666669999998 .28333333299999985 .20000000000000018 23.828125 .44438225 .3620529 . . -.6500000000000004 -.6000000000000005 20.28240971082493 . . 3.5 7.899999999999999 1.9750000000000005 1.125 21.852237252861602 .20329936 .4754064 7.5 13.199999999999996 -.5500000000000007 -2.1500000000000004 21.15529420201513 .3952771 .4003086 7.650000000000006 13.450000000000003 .6500000000000004 .7000000000000002 22.81949008342461 .40195155 .3673011 5.099999999999994 10 .25 .4500000000000002 24.323503519151974 .2755112 .3962483 9 16.099999999999994 1.5 .7000000000000002 23.335466144755166 .4967275 .32853845 7.1000000000000085 8.400000000000006 1.1166666670000005 1.218666667 22.99687493365916 .2197122 .3761704 1.75 . -.8500000000000005 -.6130000000000004 20.654414319188604 . .53510225 9.799999999999997 15.599999999999994 -.5499999999999998 .2999999999999998 22.013718563767153 .4805632 .3346372 8.149999999999991 16.75 -.3166666669999998 . 24.18745275888133 .51895666 .3319245 . . -1.0499999999999998 -.9500000000000002 18.5901249256395 . . 4.799999999999997 10.900000000000006 2.0500000000000007 1.2000000000000002 21.038062283737023 .3125548 .46149606 4.274999999999999 5.974999999999994 2.0999999999999996 .2999999999999998 22.892819979188346 .13246675 .43985835 5.700000000000003 10.5 -.75 -.5 23.32341806381828 .29493323 .4009791 . . .7000000000000002 .8540000000000001 21.06263958573807 . . . . . . 21.35991456034176 . . . . -.20000000000000018 -1.1000000000000005 22.994595350308863 . . 10.233333330000008 9.433333329999996 . . 24.91349480968858 .25426203 .2733597 9.099999999999994 15.5 1.0500000000000007 -.3666666669999996 19.698926158499525 .4802072 .3913026 4.433333329999996 7.033333329999991 1.9499999999999993 1.4429999999999996 24.09297052154195 .1689228 .4149569 4 8.700000000000003 . . 28.282828282828284 .223107 .34960535 4.6000000000000085 9.300000000000011 . . 29.25907395227855 .2433599 .3190366 8.783333330000005 16.950000000000003 1.5499999999999998 3.1999999999999993 25.232605270634057 .5246978 .2993954 . . .26666666699999997 .6166666669999996 25.05499671921558 . . 8.75 16.25 2 .9500000000000002 25.711662075298438 .4987992 .29156846 4.25 8.599999999999994 -2.3659999999999997 -.06599999999999984 25.155895691609977 .2238905 .3999844 end
0 Response to Absent confidence intervals when using twoway lfitci
Post a Comment