I am doing logistic regression to look at several predictors for a certain outcome. I checked the interaction between two of these predictors using LRT and found an interaction.
I want to use Lincom command to combine the coefficents and produce OR that I can report in my result table. My problem is that I do not rely understand how to do this.
code for final model:
logistic persis90_180 b5.region##i.lap age i.gender if exposure==0
*I have 10 region that interact with 3 lap
I ran a loop to get Or for lap and region and another loop for region and lap
forvalues l = 0/2 {
forvalues r = 0/10{
di "reporting OR for lap `l' and r `r'"
lincom `l'.lap + `l'.lap#`r'.region
}
}
Ex: result
reporting OR for lap 1 and r 1
reporting OR for lap 1 and r 1
( 1) [persis90_180]1.lap + [persis90_180]1.region#1.lap = 0
------------------------------------------------------------------------------
persis90_180 | Odds ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
(1) | .5768613 .1228305 -2.58 0.010 .3800371 .8756224
------------------------------------------------------------------------------
reporting OR for lap 1 and r 2
( 1) [persis90_180]1.lap + [persis90_180]2.region#1.lap = 0
------------------------------------------------------------------------------
persis90_180 | Odds ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
(1) | .6587111 .0740223 -3.71 0.000 .5284959 .8210097
------------------------------------------------------------------------------
reporting OR for lap 1 and r 3
( 1) [persis90_180]1.lap + [persis90_180]3.region#1.lap = 0
------------------------------------------------------------------------------
persis90_180 | Odds ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
(1) | .6154713 .1528265 -1.95 0.051 .3783098 1.001309
------------------------------------------------------------------------------
reporting OR for lap 1 and r 4
( 1) [persis90_180]1.lap + [persis90_180]4.region#1.lap = 0
------------------------------------------------------------------------------
persis90_180 | Odds ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
(1) | .2883573 .1106711 -3.24 0.001 .1359068 .611816
------------------------------------------------------------------------------
reporting OR for lap 1 and r 5
( 1) [persis90_180]1.lap + [persis90_180]5b.region#1o.lap = 0
------------------------------------------------------------------------------
persis90_180 | Odds ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
(1) | .4773321 .0614427 -5.75 0.000 .3708967 .6143109
------------------------------------------------------------------------------
reporting OR for lap 1 and r 6
( 1) [persis90_180]1.lap + [persis90_180]6.region#1.lap = 0
------------------------------------------------------------------------------
persis90_180 | Odds ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
(1) | .9382366 .2107756 -0.28 0.777 .6040728 1.457255
------------------------------------------------------------------------------
reporting OR for lap 1 and r 7
( 1) [persis90_180]1.lap + [persis90_180]7.region#1.lap = 0
------------------------------------------------------------------------------
persis90_180 | Odds ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
(1) | .5652742 .0770354 -4.19 0.000 .4327706 .7383472
------------------------------------------------------------------------------
reporting OR for lap 1 and r 8
( 1) [persis90_180]1.lap + [persis90_180]8.region#1.lap = 0
------------------------------------------------------------------------------
persis90_180 | Odds ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
(1) | .6218397 .0902302 -3.27 0.001 .4679154 .8263986
------------------------------------------------------------------------------
reporting OR for lap 1 and r 9
( 1) [persis90_180]1.lap + [persis90_180]9.region#1.lap = 0
------------------------------------------------------------------------------
persis90_180 | Odds ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
(1) | .6056324 .0850629 -3.57 0.000 .4598914 .7975591
------------------------------------------------------------------------------
reporting OR for lap 1 and r 10
( 1) [persis90_180]1.lap + [persis90_180]10.region#1.lap = 0
------------------------------------------------------------------------------
persis90_180 | Odds ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
(1) | .6244288 .104551 -2.81 0.005 .4497408 .866969
------------------------------------------------------------------------------
my question is how to get the final OR for lap 1 if i have 10 regions tested, and got other results for each region ? Is there ant resuorces that can help me to understand this process? How to report interaction results in final table
Related Posts with calculation odd ratio for interaction terms using Lincom
IV Regression Panel Data - xtivreg - lagged VariablesHello, I am working with StataIC16 and the panel data set mathpnl**, for the years 1992 - 1998- I w…
How to extract one variable from a string?We have a dataset of different movies but genres contain more than one variable. For example, under …
Store tab command's resultsHi all! I created a variable indicating in which income decile individuals of a population are. I t…
How do I export multiple diagnostic tests to one .csv table?Hello STATAlist friends! I'm working with STATA 15 on a project validating a several tests to gold s…
Robust option in a ols modelHi everyone, I was wondering if one can use robust option in a ols regression model that includes bo…
Subscribe to:
Post Comments (Atom)
0 Response to calculation odd ratio for interaction terms using Lincom
Post a Comment