This is my dataset:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float log_realHP double(Unemployment_rate CPI_index) float(logrealconsind logReal_income real_interest) 11.066638 . 100 . . . 11.448387 . 102.4 . . . 11.449027 . 106.5984 . . . 11.436362 . 110.11614719999999 . . 3.355 11.425336 . 112.42858629119998 . . 3.809167 11.88968 . 113.89015791298557 . . 3.126667 11.878828 . 115.82629059750631 . . 3.594167 11.9539 1.1709528024032914 117.10037979407888 . . 3.216667 12.027326 1.0189597064731957 118.97398587078413 . . 2.404167 12.061186 1.65181669133134 121.94833551755373 . . 3.6008334 12.058692 1.7168838356396807 123.41171554376437 . . 3.459167 12.03159 1.8364521815338959 125.01606784583329 . 10.228337 2.470833 11.994463 2.3129111842105266 127.89143740628745 11.449235 10.21136 2.2066667 11.930356 2.5779070224387945 131.08872334144462 11.39064 10.195252 2.0708334 11.8488 2.5307801523129543 134.36594142498072 11.28985 10.225975 3.365833 11.817344 2.3942860219851227 135.70960083923052 11.270553 10.213326 3.5075 11.832868 2.2004945873548722 136.5238584442659 11.32823 10.241876 3.4741666 11.876635 1.9359284664104206 136.9334300195987 11.364115 10.274782 2.0316668 11.936114 1.5915721050958196 138.85049803987306 11.46233 10.283296 1.4991666 12.051608 1.363041781627516 141.2109565065509 11.507878 10.30509 .4025 12.139122 . 144.8824413757212 11.534215 . 1.435 11.373663 . 100 . . . 11.8328 . 102.4 . . . 11.792617 . 106.5984 . . . 11.767217 . 110.11614719999999 . . 3.355 11.753452 . 112.42858629119998 . . 3.809167 12.143667 . 113.89015791298557 . . 3.126667 12.12681 . 115.82629059750631 . . 3.594167 12.205215 1.3994621962031346 117.10037979407888 . . 3.216667 12.26741 1.2629286880783888 118.97398587078413 . . 2.404167 12.281482 1.9913041609661408 121.94833551755373 . . 3.6008334 12.280895 1.9178043271348002 123.41171554376437 . . 3.459167 12.225747 1.9098898465745313 125.01606784583329 . 10.303476 2.470833 12.191173 2.37366700042712 127.89143740628745 11.449235 10.286084 2.2066667 12.096637 2.7690231192558423 131.08872334144462 11.39064 10.26936 2.0708334 12.01052 2.6149684400360687 134.36594142498072 11.28985 10.301238 3.365833 11.996036 2.3745448788982113 135.70960083923052 11.270553 10.293784 3.5075 12.025772 2.2898609680403648 136.5238584442659 11.32823 10.326927 3.4741666 12.065701 2.007377765032522 136.9334300195987 11.364115 10.35463 2.0316668 12.124705 1.7314613663629586 138.85049803987306 11.46233 10.368253 1.4991666 12.19029 1.5859610214620499 141.2109565065509 11.507878 10.389135 .4025 12.223978 . 144.8824413757212 11.534215 . 1.435 11.289782 . 100 . . . 11.818513 . 102.4 . . . 11.7855 . 106.5984 . . . 11.753032 . 110.11614719999999 . . 3.355 11.739367 . 112.42858629119998 . . 3.809167 12.134277 . 113.89015791298557 . . 3.126667 12.11742 . 115.82629059750631 . . 3.594167 12.226357 1.33 117.10037979407888 . . 3.216667 12.26741 1.05 118.97398587078413 . . 2.404167 12.273849 1.6038806086922506 121.94833551755373 . . 3.6008334 12.269553 1.6676362226100447 123.41171554376437 . . 3.459167 12.249003 1.7095345403683269 125.01606784583329 . 10.33514 2.470833 12.199078 2.3100113542930973 127.89143740628745 11.449235 10.327867 2.2066667 12.11769 2.4056473557597506 131.08872334144462 11.39064 10.308275 2.0708334 12.024005 2.3806689679800024 134.36594142498072 11.28985 10.347644 3.365833 11.982306 2.2976666798716474 135.70960083923052 11.270553 10.330508 3.5075 11.976323 2.2146642410820214 136.5238584442659 11.32823 10.366885 3.4741666 12.01838 2.0086648286727056 136.9334300195987 11.364115 10.391165 2.0316668 12.01325 1.615063420783109 138.85049803987306 11.46233 10.399435 1.4991666 12.068002 1.218314010611122 141.2109565065509 11.507878 10.417065 .4025 12.101523 . 144.8824413757212 11.534215 . 1.435 11.552146 . 100 . . . 12.104395 . 102.4 . . . 12.069604 . 106.5984 . . . 12.047832 . 110.11614719999999 . . 3.355 12.032354 . 112.42858629119998 . . 3.809167 12.387163 . 113.89015791298557 . . 3.126667 12.373962 . 115.82629059750631 . . 3.594167 12.3918 .7958766012279239 117.10037979407888 . . 3.216667 12.434464 .6784260515603799 118.97398587078413 . . 2.404167 12.436175 1.1649021824785006 121.94833551755373 . . 3.6008334 12.440403 1.1593626817715061 123.41171554376437 . . 3.459167 12.424276 1.2185482808589119 125.01606784583329 . 10.482217 2.470833 12.37217 1.4044026389705402 127.89143740628745 11.449235 10.48165 2.2066667 12.310374 2.0481810201892126 131.08872334144462 11.39064 10.450358 2.0708334 12.23276 2.0915789812401457 134.36594142498072 11.28985 10.50418 3.365833 12.226426 1.9489440557206301 135.70960083923052 11.270553 10.46103 3.5075 12.241873 1.880597966404233 136.5238584442659 11.32823 10.506447 3.4741666 12.27701 1.492110860662243 136.9334300195987 11.364115 10.546596 2.0316668 12.296556 1.2607160867372669 138.85049803987306 11.46233 10.54604 1.4991666 12.403312 1.1927555792711635 141.2109565065509 11.507878 10.57182 .4025 12.442365 . 144.8824413757212 11.534215 . 1.435 11.127263 . 100 . . . 11.796694 . 102.4 . . . 11.756512 . 106.5984 . . . 11.724045 . 110.11614719999999 . . 3.355 11.710588 . 112.42858629119998 . . 3.809167 12.07601 . 113.89015791298557 . . 3.126667 12.059152 . 115.82629059750631 . . 3.594167 12.111186 1.0519442832269297 117.10037979407888 . . 3.216667 12.145667 .9472802127737094 118.97398587078413 . . 2.404167 12.14305 1.6363636363636365 121.94833551755373 . . 3.6008334 12.139817 1.4213345967418638 123.41171554376437 . . 3.459167 12.10502 1.501556491485076 125.01606784583329 . 10.279052 2.470833 12.04164 1.957019422494646 127.89143740628745 11.449235 10.261792 2.2066667 11.984159 2.443268056121127 131.08872334144462 11.39064 10.239828 2.0708334 11.880217 2.4531668153434434 134.36594142498072 11.28985 10.27592 3.365833 11.833517 1.9693816884661117 135.70960083923052 11.270553 10.250465 3.5075 end
Code:
----------------------------------------------------------------------------------- | Robust log_realHP | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- logReal_income | 1.69775 .6003548 2.83 0.007 .4834174 2.912082 Unemployment_rate | .0564982 .0183193 3.08 0.004 .0194439 .0935524 CPI_index | -.0170389 .0018809 -9.06 0.000 -.0208435 -.0132343 real_interest | -.0493594 .0135287 -3.65 0.001 -.0767238 -.0219949 logrealconsind | .5121079 .0954431 5.37 0.000 .3190561 .7051598 | Year | 2013 | .0292081 .0227494 1.28 0.207 -.0168068 .075223 2014 | .0832902 .009536 8.73 0.000 .0640019 .1025785 2015 | .1190992 .0165152 7.21 0.000 .085694 .1525043 2016 | .0719323 .0104104 6.91 0.000 .0508753 .0929892 | _cons | -9.113447 6.896683 -1.32 0.194 -23.06331 4.836411 ------------------+---------------------------------------------------------------- sigma_u | .10920836 sigma_e | .03188331 rho | .92145988 (fraction of variance due to u_i) -----------------------------------------------------------------------------------
When logReal_income increases by 1 percent, log_realHP(houseprices) increases by 1.69 percent.
When Unemployment rate increases by 1 percent point, log_realHP(houseprices) increases by 0.0565 percent points.
When CPI index increases by 1 percent point, log_realHP(houseprices) decreases by 0.017
When real_interest increases by 1 percent point, log_realHP(houseprices) decreases by 0.049
When logrealconsind(construction costs) increases by 1 percent, log_realHP(houseprices) increases by 0.512 percent.
Wondering if this is the correct interpretation?
Thank you very much everyone!
0 Response to Interpretation of coefficients (Log-log/linear)
Post a Comment