I am current facing a bit of dilemma with missing variables. I have merge two dataset, with my original dataset having employment and the second having mean disposable income.
My observation are separated by country, age categories and years across 29 nations. However, mean disposable income data is only available for some countries and some of the years. For example, I only have the mean disposable income for age groups (4 in total) in Australia for 2000, 2004, 2008, 2010, 2012 and 2014. Whilst for Denmark I have data for the years 2000 and then 2005-2014. Since these gaps tend to be only a few years (and thus the mean income difference isn't massive) that I could input mean wages by linear intervals (so if in 2000 the mean income was 1900 euros and in 2002 it was 2100, the mean income estimated for 2001 would be 2000). I hope this description is clear. I have attached my data set below:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input double country_n float(age_groups year) double(m_employmentratio converted_inc_2) 1 1 1 61.905171585 18383.639404296875 1 2 1 75.74068471 17202.3203125 1 3 1 78.66788015 18233.490234375 1 4 1 54.09412395333334 16983.509765625 1 1 2 61.392848445 . 1 2 2 75.91077349666666 . 1 3 2 78.38746349 . 1 4 2 54.60154921666666 . 1 1 3 61.208336079999995 . 1 2 3 76.02173251666666 . 1 3 3 79.07494859 . 1 4 3 55.98275992333333 . 1 1 4 61.894535415 . 1 2 4 76.63595531666667 . 1 3 4 79.375593615 . 1 4 4 57.40405967 . 1 1 5 62.136433595 21524.943359375 1 2 5 76.73670893666667 21407.939453125 1 3 5 79.519111255 21940.904296875 1 4 5 58.573308759999996 19854 1 1 6 63.170592385000006 . 1 2 6 77.87832071000001 . 1 3 6 80.937467405 . 1 4 6 60.31463328666666 . 1 1 7 63.493052445000004 . 1 2 7 78.43671636666667 . 1 3 7 81.06239939 . 1 4 7 61.89366863 . 1 1 8 63.896869845 . 1 2 8 79.28298021666667 . 1 3 8 81.826284695 . 1 4 8 63.00212025666667 . 1 1 9 64.198685575 30072.904296875 1 2 9 79.70918984 29797.384765625 1 3 9 82.06593212499999 30276.875 1 4 9 63.93898066666666 29603.291015625 1 1 10 60.697728655 . 1 2 10 78.14557024 . 1 3 10 81.02484167 . 1 4 10 65.10186506000001 . 1 1 11 59.934069255 38245.728515625 1 2 11 78.33510748666667 37506.33984375 1 3 11 81.161630255 37909.0390625 1 4 11 66.59804761 36584.0078125 1 1 12 59.755601799999994 . 1 2 12 79.18128143333333 . 1 3 12 81.01241693 . 1 4 12 66.88963640666667 . 1 1 13 58.92321488 46610.48828125 1 2 13 78.83483037 47564.55859375 end label values country_n country1 label def country1 1 "Australia", modify label values age_groups age_groups_lbl label def age_groups_lbl 1 "15-24", modify label def age_groups_lbl 2 "26-39", modify label def age_groups_lbl 3 "40-49", modify label def age_groups_lbl 4 "50-65", modify label values year year_n label def year_n 1 "2000", modify label def year_n 2 "2001", modify label def year_n 3 "2002", modify label def year_n 4 "2003", modify label def year_n 5 "2004", modify label def year_n 6 "2005", modify label def year_n 7 "2006", modify label def year_n 8 "2007", modify label def year_n 9 "2008", modify label def year_n 10 "2009", modify label def year_n 11 "2010", modify label def year_n 12 "2011", modify label def year_n 13 "2012", modify
Hugo
0 Response to Replacing missing value by linear intervals between tow points across time.
Post a Comment