Hello,

I am willing to get ride of duplicate observations from my dataset. I have identified the duplicate using:
"sort zip
quietly by zip: gen dup = cond(_N==1,0,_n)
tab dup"
zip is the variable that I am using as identifier.

Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input str6 zip double(arson2010 assault2010 auto_theft2010 burglary2010 murder2010 rape2010 robbery2010 theft2010 arson2019 assault2019 auto_theft2019 burglary2019 murder2019 rape2019 robbery2019 theft2019)
""      0   2   1   2  0  1   1    10 0  0   0   0 0 0  0   0
""      .   0   0   0  0 10   0     9 .  0   0   0 0 0  0   0
""      . 414 459 573 30 65 299 12523 .  3   0   1 1 1 10  23
""      .   .   .   .  .  .   .     . 0  6  22   9 0 .  5 264
"0"     0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"05713" .   0   0   0  0  0   0     0 .  0   0   0 0 0  0   0
"05719" .   0   0   0  0  0   0     0 .  0   0   0 0 0  0   0
"08063" 0   0   0   0  0  .   0     0 0  0   0   0 0 .  0   1
"08065" 0   0   0   0  0  .   0     0 0  0   0   0 0 .  0   0
"08102" 0   0   0   0  0  .   0     0 0  0   0   0 0 .  0   2
"09080" .   .   .   .  .  .   .     . 0  0   0   0 0 0  0   0
"1"     .   .   .   .  .  .   .     . 0  0   0   0 0 0  0   0
"1"     0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"1050"  .   .   .   .  .  .   .     . 0  1   0   1 0 0  0   0
"11"    .   .   .   .  .  .   .     . 0  0   0   0 0 0  0   0
"111"   .   .   .   .  .  .   .     . 0  0   0   0 0 0  0   0
"12"    .   .   .   .  .  .   .     . 0  0   0   0 0 0  0   0
"12005" .   .   .   .  .  .   .     . 0  0   0   0 0 0  0   0
"1229"  .   .   .   .  .  .   .     . 0  0   0   1 0 0  0   0
"14233" 0   9   9   7  1  0   8    71 1  3   3   2 1 0  5  46
"15020" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15090" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   1
"15101" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   1
"15104" 0   0   0   0  0  0   0     0 0  1   0   0 0 0  0   0
"15106" 0   1   1   6  0  0   0     2 0  0   1   0 0 0  0   1
"15110" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15112" 0   0   0   0  0  0   0     7 0  0   0   2 0 0  0   3
"15120" 0   0   2   1  0  0   0    13 0  1   1   1 0 0  0  14
"15122" 0   1   0   1  0  0   0    11 0  0   1   2 0 0  0   0
"15126" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15129" 0   1   0   0  0  0   0     2 0  1   1   0 0 0  0   1
"15132" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   1
"15136" 0   0   0   0  0  0   1     1 0  0   0   0 0 0  0   1
"15137" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15143" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15146" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15147" 0   0   0   0  0  0   0     4 0  0   0   0 0 0  0   2
"15201" 3  33  46 102  0  0  37   193 0  7  25  29 0 0  3 151
"15202" 0   0   0   0  0  0   0     0 0  0   0   2 0 0  1   1
"15203" 0  80  62 151  1  0  67   586 1 45  65  69 1 0 47 358
"15204" 2  34  41 102  2  0  30   135 1 17  14  20 2 0 16  97
"15205" 0  19  20  61  1  0   8    90 0  5  20  12 0 0  6  41
"15206" 2 110 167 269 10  0 150   778 2 53  90 108 2 0 46 441
"15207" 0  30  26  86  1  0  20   118 1 12  15  44 1 0 10 113
"15208" 4  70  62 161  5  0  65   220 5 54  62  71 5 0 37 183
"15210" 2 129  93 347  4  0 108   441 1 82 103 138 1 0 72 405
"15211" 1  30  39 154  0  0  25   356 0 16  38  56 1 0 13 159
"15212" 5 127  86 311  2  0 119   486 5 61  62 118 1 0 47 443
"15213" 0  27  64 214  0  0  64   449 1 17  27  76 0 0 25 263
"15214" 2  63  34 170  4  0  27   155 1 35  41  47 2 0 24 116
"15215" 0   0   1   0  0  0   0    16 0  1   2   0 0 0  3  25
"15216" 0  17  25  57  1  0  10   142 0 15  17  16 0 0  5 123
"15217" 1   8  40 144  0  0  33   349 1  8  28  85 0 0 10 250
"15218" 0   0   2   6  0  0   2    37 0  0   4   3 0 0  1  30
"15219" 2  91  68 158  6  0  96   453 1 64  63  78 6 0 43 280
"15220" 3  12  17  46  2  0  23   137 0  7   5  14 0 0  7  50
"15221" 4  23  22  63  2  0  23    98 0 19  23  40 1 0 20 137
"15222" 1  30  20  58  0  0  52   461 1 26  20  23 0 0 54 320
"15223" 0   6   5  14  0  0  17    21 0  1   2   1 0 0  2   7
"15224" 6  36  47  95  1  0  59   348 2 21  32  36 1 0 24 186
"15226" 0  25  25  44  0  0  14   138 3 21  21  39 0 0 11 111
"15227" 1   9  35  48  0  0  12    78 0  7   9   8 0 0  6  40
"15228" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   1
"15229" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   1
"15231" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15232" 0  12  34  43  0  0  21   383 0 12  16  42 0 0 13 182
"15233" 0  16  11  29  0  0  12    80 0  9   9  14 0 0 10  50
"15234" 0   2   3  15  0  0   2    11 0  3   2   4 0 0  1  10
"15235" 0   4   0  10  0  0   6     6 0  1   5   1 0 0  2   3
"15236" 0   0   0   1  0  0   0     0 0  0   0   0 0 0  0   0
"15237" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   2
"15238" 0   0   3   0  0  0   3    24 0  0   0   0 0 0  0   2
"15240" 0   1   1   2  0  0   2    11 0  0   1   1 0 0  0   5
"15243" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15260" 0   0   1   0  0  0   0     3 0  0   0   0 0 0  0   6
"15262" 1   1   4   0  0  0   2    24 0  2   4   0 0 0  1  11
"15275" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15282" 0   2   3  12  0  0   3    22 1  0   2   0 0 0  1  11
"15283" 0   0   1   2  0  0   0     4 0  0   1   1 0 0  1   2
"15290" 0   2   6   6  0  0   2    12 0  2   5   4 0 0  2  11
"15320" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15401" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15419" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15423" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"15522" 0   0   0   0  0  0   1     0 0  0   0   0 0 0  0   0
"15644" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"16"    .   .   .   .  .  .   .     . 0  0   0   0 0 0  0   1
"16059" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   1
"16127" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"16316" 0   0   0   0  0  0   0     0 0  0   0   0 0 0  0   0
"19004" 0   0   0   0  0  .   0     0 0  5   3   6 0 .  4  37
"19006" 0   0   0   0  0  .   0     0 0  0   0   0 0 .  0   0
"19012" 0   0   0   0  0  .   0     0 1  5   0   5 0 .  4  17
"19016" 0   0   0   0  0  .   0     0 0  0   0   0 0 .  0   5
"19025" 0   0   0   0  0  .   0     0 0  0   0   0 0 .  0   1
"19027" 0   0   0   0  0  .   0     0 0  0   0   0 0 .  0   0
"19031" 0   0   0   0  0  .   0     0 0  0   0   0 0 .  0   0
"19032" 0   0   0   0  0  .   0     0 0  0   0   0 0 .  0   0
"19038" 0   0   0   0  0  .   0     0 0  0   0   2 0 .  0   2
"19046" 0   0   0   0  0  .   0     0 0  0   0   0 0 .  0   0
end

For each observations I have several variable that measure the number of crimes for different type of crimes for the period 2010-2019 (not all the variables are shown in the example)
Instead of get rid of duplicate observations I am willing to sum each variable for each duplicate observations, do you have any suggestion about a code to do this?

thank you in advance.

BR,
ac